欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

When a user has the option between a replaceable insert end mill and a solid carbide end mill (hereafter referred to as “solid carbide end mill”), they typically ask a fundamental question: which tool offers better performance? In which machining fields does each tool have more advantages? Rather than being a question of which is superior, it is more about which is better suited to specific applications. Understanding the distinct performance characteristics of each type of tool and how to use them effectively to achieve good machining results is essential.

Generally, compared to traditional insert end mills, solid carbide end mills offer significantly higher machining precision. This fact holds true specifically for the performance of the tool during cutting operations. Although both types of tools may have the same dimensional precision grade, the rigidity of solid carbide material is much higher than that of a steel tool holder with insert blades. This means that solid carbide end bit mills are less likely to undergo deflection or deformation under cutting forces, leading to higher machining precision.

The 3 Elements You Should Take into Consideration when You Select End Mills 2

Base Material of Solid Carbide Molinos de extremo

The machining performance of solid carbide end mills largely depends on the type of carbide base material used. The base material is crucial because it must support the cutting edges of the tool, endure significant cutting forces, and prevent any form of tool damage.

To ensure that end mills have sufficient toughness and provide good dynamic resistance, solid carbide end mills typically use micro-grain carbide as the base material (see Figure 2). This base material offers higher hardness and better edge sharpness while maintaining good toughness. However, compared to conventional grain-sized carbide, micro-grain carbide has relatively poorer thermal conductivity (its ability to dissipate heat from the cutting area). This means that heat generated during cutting tends to remain on the tool surface. Therefore, the cutting edges of solid carbide end mills must be able to withstand this cutting heat and manage the contact arc length, which is an important consideration when selecting solid carbide end mills.

The 3 Elements You Should Take into Consideration when You Select End Mills 3

Coating and Cutting Edge Preparation of Solid Carbide End Mills

To enhance tool wear resistance and isolate the cutting zone, which generates heat, from the tool base (since heat accumulation in the base material can shorten tool life), solid carbide end mills are typically coated. Additionally, because the cutting edges of solid carbide end bit mills are quite sharp, appropriate adhesion between the tool base and the coating is also crucial (see Figure 3). This is especially important for smaller diameter solid carbide end mills, where the sharpness of the cutting edges is a key factor in the tool’s machining performance.

The 3 Elements You Should Take into Consideration when You Select End Mills 4

The Ideal Cutting Edge for Solid Carbide End Mills

The ideal cutting edge of a solid carbide end mill should have as high a hardness as possible while minimizing the risk of chipping. This goal can be partially achieved through proper cutting edge preparation. Generally, different solid carbide end mills may employ various cutting edge preparation methods, edge geometries, and sharpness levels depending on the required machining quality and tool life.

 

The cutting edge is the intersection line between the tool’s rake face and flank face. By grinding these faces, a sharp cutting edge can be obtained. However, if a PVD coating is deposited directly on a sharp cutting edge, it can create high internal stresses within the coating. These high internal stresses can cause the coating to crack and peel off during cutting, thereby shortening the tool’s life. The quality and effectiveness of the coating depend on its ability to withstand and/or reduce the wear rate during cutting. To ensure that the coating adheres more firmly to the cutting edge and to prevent edge damage, it is necessary to perform edge reinforcement (or blunting) treatment (see Figure 4). In other words, to ensure machining stability and achieve coating functionality, a certain degree of edge sharpness must be sacrificed, which in turn extends tool life.

The 3 Elements You Should Take into Consideration when You Select End Mills 5

It can even be said that the importance of cutting edge preparation for solid carbide end bit mills outweighs that of base material type and coating technology. Logically, this has a significant impact on the regrinding of solid carbide end mills. After regrinding, if the cutting edge is not re-blunted to restore its initial condition, the full potential of the tool repair cannot be realized. Therefore, considering the high initial cost of solid carbide end mills, it is crucial for the original tool manufacturer or its qualified service centers to handle tool regrinding services.

The 3 Elements You Should Take into Consideration when You Select End Mills 6

Machining Strategies for Solid Carbide End Mills

Solid carbide end mills can be categorized into several major types based on their size and geometry, and further subdivided into many specialized subcategories according to different machining ranges. In various tool application areas, design features such as flute geometry, cutting edge angles, rake and relief angles, and helix angles play crucial roles in differentiating among the types of solid carbide end bit mills. This classification guides the selection of both end mills and machining strategies.

So, which machining strategy is the best choice? This depends on the overall machining goals: is your primary aim to maximize productivity and part output, or to minimize tool costs and simplify tool types? Additionally, it also depends on the workpiece and various related factors: is the tool used for slotting, side milling, or a combination of both?

A final consideration is constraints, such as: what is the potential machining capability of the machine tool? How rigid is the workpiece clamping? These factors might become limiting constraints, preventing the use of more advanced machining strategies or more efficient specialized solid carbide end mills.

The correct choice of solid carbide end bit mill depends on multiple factors, with the most important being the adoption of the correct machining strategy. In practice, many constraints cannot be changed: the machining machine, CAM system, and the material, size, tolerance, and shape of the workpiece are fixed constants. However, within the existing machining system framework, machining results can still be influenced by formulating the right machining strategy and using various methods, and by optimizing cutting conditions through adjustments to feed rate, cutting speed, and cutting depth according to the overall machining goals.

Based on the selected focus and technical strategy, appropriate solid carbide end mills can be chosen. There are two obvious ways to select tools:

  1. Performance-Based Selection:Choose specialized end mills with specific applications (such as side milling, slotting, or 3D profiling) to achieve optimal performance.
  2. Versatility-Based Selection:Choose general-purpose end bit mills with a wider range of applications but fewer types.

Regardless of the selection method, users need to further narrow down the options within the available varieties and specifications of solid carbide end mills.

The 3 Elements You Should Take into Consideration when You Select End Mills 7

 

Resumen

The material, size, tolerance, and shape of the machined parts are given constants. However, within the existing machining system framework, machining results can still be influenced by formulating the correct machining strategy and employing various methods. Additionally, cutting conditions can be optimized by adjusting feed rate, cutting speed, and cutting depth according to the overall machining goals.

Based on the chosen focus and technical strategy, appropriate solid carbide end mills can be selected. There are two clear approaches to tool selection:

  1. Performance-Based Selection:Choose specialized end mills designed for specific applications (such as side milling, slotting, or 3D profiling) to achieve the best performance.
  2. Versatility-Based Selection:Choose general-purpose end mills that, while fewer in types, offer a wider range of applications.

Regardless of the selection method, users need to further narrow down the choices within the available varieties and specifications of solid carbide end mills.

septiembre 17, 2024

Carbide is an incredible material

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

麻豆久久国产精品亚洲-日本理论中文字幕在线视频| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天| 极品人妻av在线播放-久久精品视频一区二区三区| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 国产欧美一区二区三区嗯嗯-欧美一区二区日本国产激情| 性都花花世界亚洲综合-日韩av一区二区三区| 精品少妇一区二区18-一区二区三区日韩在线播放| av中文字幕男人天堂-懂色av一区二区三区在线观看| 欧美精品国产系列一二三国产真人-在线观看国产午夜视频| 亚洲综合久久综合激情-日韩欧美精品人妻二区少妇| 国产免费一区二区三区不-日本少妇免费一区二区三区| 国产免费高清av在线播放-成年人在线播放中文字幕| 日本少妇激情一区二区-亚洲自偷自拍熟女另类蜜臀| 在线视频成人一区二区-亚洲另类中文字幕在线| 亚洲欧美精品在线一区-99热国产在线手机精品99| 在线观看中午中文乱码-2021国产一级在线观看| 亚洲永久免费在线观看-亚洲欧美导航一区二区导航| 亚洲最新国产无人区123-黄片一区二区在线观看| 日本高清二区视频久二区-大香蕉在线视频大香蕉在线视频| 日韩毛片在线免费人视频-超碰中文字幕av在线| 国产黄片在现免费观看-色老板最新在线播放一区二区三区| mm在线精品视频在线观看-欧美国产日韩在线一区二区三区| 亚洲愉拍自拍欧美精品app-亚洲一区不卡在线视频| 欧美三级韩国三级日本三斤-日本不卡一区不卡二区| 激情字幕久久久字幕中文-一区二区三区免费黄片| 韩漫一区二区在线观看-精品国产免费未成女一区二区三区| 亚洲美女喘息呻吟的网站-国产免费一区二区三区三洲| 国产在线一区二区三区欧美-久久偷拍精品视频久久| 亚洲欧美日韩二区三区-国产在线欧美一区日韩二区| 免费午夜福利视频在线观看-亚洲成人日韩欧美伊人一区| 少妇一区二区三区粉嫩av-国产精品区久久久久久久| 99久久精品一区二区成人-麻豆国产av玩弄放荡人妇系列| 亚洲黑人欧美一区二区三区-亚洲一区二区三区免费视频播放| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 五月婷婷免费观看视频-男人操女人下面视频在线免费看| 日本亚洲精品中字幕日产2020-很黄很黄的裸交视频网站| 色婷婷六月婷婷一区二区-91草草国产欧美在线观看| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 日本中文字幕啊啊啊啊-久久精品伊人久久精品伊人| 欧美一级一线在线观看-亚洲一区二区亚洲三区| 青青操大香蕉在线播放-国产亚洲欧美精品在线观看|