欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

What is carbide?

硬質(zhì)合金是通過(guò)粉末冶金工藝制成的合金材料,由難熔金屬和粘結(jié)金屬的硬質(zhì)化合物組成。碳化物具有硬度高、耐磨、強(qiáng)度和韌性好、耐熱、耐腐蝕等優(yōu)良性能。特別值得注意的是它們的高硬度和耐磨性,即使在高達(dá) 500°C 的溫度下也基本保持不變,并在 1000°C 時(shí)保持顯著的硬度。

carbides are widely used as cutting tool materials, including turning tools, milling cutters, planers, drill bits, boring tools, etc. They are employed for machining a variety of materials, including cast iron, non-ferrous metals, plastics, synthetic fibers, graphite, glass, stone, and common steel. Additionally, carbides can be utilized for cutting challenging materials like heat-resistant steel, stainless steel, high manganese steel, and tool steel.

?

What is metal ceramic?

Metal ceramic is a composite material composed of ceramic and metal. It is defined by the ASTM (American Society for Testing and Materials) committee as a heterogeneous composite material consisting of metal or alloy and one or more ceramic phases, where the latter typically constitutes 15% to 85% by volume. Importantly, at the preparation temperature, there is minimal solubility between the metal and ceramic phases. In a narrow sense, metal ceramics refer to a category of materials within composite materials where both metal and ceramic phases have interfaces in three-dimensional space.

Composition of metal ceramic

Metal ceramics are created by adding metal powder to the clay used in ceramic production, allowing the ceramic to withstand high temperatures without becoming easily breakable. Metal matrix metal ceramics, also known as dispersion-strengthened materials, are produced by adding oxide fine powders to a metal matrix. Examples include sintered alumina (aluminum-alumina), sintered beryllium (beryllium-beryllium oxide), TD nickel (nickel-thorium oxide), and others. These are composite materials composed of one or more ceramic phases and metal or alloy phases.

In a broader sense, metal ceramics also encompass refractory compound alloys, carbides, and metal-bonded diamond tool materials. The ceramic phase in metal ceramics consists of oxides or refractory compounds with high melting points and high hardness, while the metal phase primarily consists of transition elements (iron, cobalt, nickel, chromium, tungsten, molybdenum, etc.) and their alloys.

 

Classification of metal ceramic

Metal ceramics are classified into two categories based on the percentage of each component phase: those with ceramics as the matrix and those with metals as the matrix. Metal matrix metal ceramics typically exhibit high temperature strength, low density, ease of processing, corrosion resistance, and good thermal conductivity. Therefore, they are commonly used in the manufacturing of structural components for aircraft and missiles, engine pistons, chemical machinery parts, and more.

Ceramic matrix metal ceramics can be further subdivided into several types:

Oxide-based metal ceramics

Used for missile nozzle liners, crucibles for melting metals, and metal cutting tools.

Carbide-based metal ceramics

Utilized in the production of cutting tools, high-temperature bearings, sealing rings, wire drawing dies, and turbine blades.

Nitride-based metal ceramics

Less commonly applied.

Boride-based metal ceramics

Less commonly applied.

Silicide-based metal ceramics

Using silicides as the matrix, combined with partial or trace amounts of metal materials. Among them, siliconized molybdenum metal ceramics find wide applications in industry.

What are the?Differences between Metal Ceramic and Carbide?? 2

The main difference between the two materials

Material distinction
WC (tungsten carbide) carbide?blades are produced using advanced metal powders such as tungsten-cobalt, tungsten-samarium, tungsten-titanium, tungsten carbide, etc., as raw materials, and they undergo high-temperature and high-pressure sintering to achieve their final form. On the other hand, ceramic blades use raw materials like aluminum oxide, zirconium oxide, etc., and are formed through high-temperature sintering treatment to create a new type of material.

Cutting performance

硬度

Ceramic blades typically exhibit higher hardness than WC (tungsten carbide) carbide?blades, reaching levels of 1800-2200HV, while the hardness of WC carbide?blades generally falls between 1600-2000HV.

Cutting Performance

In comparison to WC carbide?blades, ceramic blades offer higher precision and smoother cutting surfaces. Achieving high-precision machining results often requires only a single cut with ceramic blades. WC carbide?blades perform better in cutting softer materials, and they often have faster cutting speeds.

Cutting Lifespan

Ceramic blades have better wear resistance, resulting in a longer lifespan. WC carbide?blades are typically more suitable for mass production processing of workpieces.

金屬陶瓷和硬質(zhì)合金有什么區(qū)別? 3

Physical performance

硬度

Ceramic blades typically exhibit higher hardness than WC (tungsten carbide) carbide?blades, reaching levels of 1800-2200HV, while the hardness of WC carbide?blades generally falls between 1600-2000HV.

Cutting Performance

In comparison to WC carbide?blades, ceramic blades offer higher precision and smoother cutting surfaces. Achieving high-precision machining results often requires only a single cut with ceramic blades. WC carbide?blades perform better in cutting softer materials, and they often have faster cutting speeds.

Cutting Lifespan

Ceramic blades have better wear resistance, resulting in a longer lifespan. WC carbide?blades are typically more suitable for mass production processing of workpieces.

The differences between the two materials

Machining Performance

Ceramic blades are relatively brittle and prone to fracture under external impact. In contrast, the manufacturing process for WC (tungsten carbide) carbide?blades is simple, and they are easy to use and maintain.

Price and Applicability

Ceramic blades are relatively more expensive but are suitable for high-precision cutting processes, such as in the fields of microelectronics and semiconductors. On the other hand, WC carbide?blades are more cost-effective and are suitable for large-scale machining applications.

碳化物

結(jié)論
In conclusion, WC (tungsten carbide) carbide?blades and ceramic blades each have their own advantages and disadvantages. Choosing the appropriate blade depends on the workpiece and processing characteristics, considering factors such as cost-effectiveness, machining lifespan, and overall effectiveness.

發(fā)表評(píng)論

電子郵件地址不會(huì)被公開(kāi)。 必填項(xiàng)已用*標(biāo)注

老司机免费福利午夜入口| 精品少妇一区二区三区中文字幕| 八插8插黄色视频| 久久久久久国产A免费观看| 欧美人与动人物A级| 久久久精品欧美一区二区三免费| 99热这里有精品在线观看| 久久高清中文字幕第一页| 亚洲欧美国产原创一区二区三区| 操老骚逼三级黄视频| 国产羞羞的视频在线观看| 大鸡鸡插我骚逼视频| 国产精品一区二区三区在线视| 2021国产精品自在自线| 国产精选三级在线观看| 男人草女人的骚逼逼| 青春草在线视频观看| 国产午夜久久精品一区四虎| 亚洲国产成人久久成人52| 色噜噜AV亚洲色一区二区| 亚洲精品影片一区二区三区| 日韩美女一区二区三区香蕉视频| 久久高清中文字幕第一页| 被公侵犯人妻少妇一区二区三区| 九九在线精品亚洲国产| 大鸡巴操淫逼视频| 国产欧美日韩一区二区在线观看| 国产熟女视频一区二区三区| 国产精品亚洲一区二区三区下载| 午夜福利在线观看aaa| 国产精品不只是精品| 曰木高清免费一本| 欧美大鸡巴插入骚b| 96精品久久久久久蜜臀浪| 美女麻豆颜色光屁股眼子| 精品久久久久中文字幕人| 操的我的逼逼好爽好多水| 火辣美女的操大逼| 搞段B片黄色全免费看看| 视频一区视频二区制服丝袜| 欧美另类在线观看|