{"id":1831,"date":"2019-05-22T02:48:07","date_gmt":"2019-05-22T02:48:07","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-2018-research-progress-on-energy-storage-and-power-battery\/"},"modified":"2020-05-04T13:12:04","modified_gmt":"2020-05-04T13:12:04","slug":"2018-research-progress-on-energy-storage-and-power-battery","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/vi\/2018-nghien-cuu-tien-trinh-tren-nang-luong-luu-tru-va-nang-luong-pin\/","title":{"rendered":"Ti\u1ebfn tr\u00ecnh nghi\u00ean c\u1ee9u n\u0103m 2018 v\u1ec1 l\u01b0u tr\u1eef n\u0103ng l\u01b0\u1ee3ng v\u00e0 pin n\u0103ng l\u01b0\u1ee3ng"},"content":{"rendered":"
\n
\"\"<\/p>\n

1. 1 v\u1eadt li\u1ec7u cathode<\/h3>\n
Lithium-ion battery cathode materials are mainly divided into lithium-rich manganese-based materials, ternary composite materials, spinel-type LiMn 2 O 4 , lithium iron phosphate and lithium nickel manganese oxide. Li-rich manganese-based solid solution cathode material Li 1 + x M 1 – x O 2 (M is a transition metal such as Ni, Co and Mn) with high specific capacity (> 200 mAh\/g), high energy density, low cost and environmental protection Friendly, etc., but there are shortcomings such as low initial discharge efficiency, low coulombic efficiency, poor cycle life, unsatisfactory high temperature performance, and low rate performance. Researcher Wang Zhaoxiang from the Institute of Physics, Chinese Academy of Sciences combines experimental research with theoretical calculations. From the exploration of the driving force of Mn migration, this paper studies a series of problems caused by Mn migration and proposes a method to inhibit Mn migration. Professor Wang Xianyou of Xiangtan University started from the relationship between material structure and performance, and improved and improved by optimizing material structure, design material composition (O excess), controlling material phase composition (Co-doped) and surface modification (coated with polyaniline). The way of lithium material performance. In the coating modification, Professor Chen Zhaoyong of Changsha University of Science and Technology conducted an in-depth study: a microporous Al 2 O 3 \/PAS double-layer cladding structure was constructed on the surface of the lithium-rich manganese-based cathode material, and the cathode material was at a rate of 0.1 C. The specific capacity is up to 280 mAh\/g, and after 100 cycles at 0. 2 C, there is still 98% capacity retention and no structural transformation of the material. The research of Ni-Co-Mn ternary cathode material mainly focuses on optimizing the composition and preparation conditions, coating or doping modification, etc., in order to further improve the capacity, cycle characteristics and rate performance. The first discharge specific capacity of the first discharge specific capacity is 209. 4 mAh\/g, 1. 0 C. The first discharge specific capacity of the material is 0. 1 C mAh\/g, 1. 0 C. 7%\u3002 Capacity retention rate of 95. 5%, the capacity retention rate at high temperatures is still 87.7%. The coating material may also be LiTiO 2 , Li 2 ZrO 3 or the like, which can improve the stability of the ternary positive electrode material. Preparation of spinel LiMn 2 O 4 by solid phase combustion synthesis can reduce the reaction temperature, accelerate the reaction rate and improve the crystal structure of the product. The main methods for modifying the spinel LiMn 2 O 4 are coating and doping, such as coating ZnO, Al 2 O 3 , doping Cu, Mg and Al. The modification of lithium iron phosphate is mentioned. The methods used are element co-doping (such as vanadium ion and titanium ion), addition of ferrocene and other catalytic graphitization additives, and compounding with graphene, carbon nanotubes and the like. For lithium nickel manganate cathode materials, high temperature stability can also be improved by doping modification and coating, and improving synthesis methods and processes. Other researchers have proposed some other types of cathode materials, such as carbonyl conjugated phthalocyanine compounds, with an initial discharge specific capacity of 850 mAh\/g; graphene-mesoporous carbon\/selenium (G-MCN\/Se) ternary For the composite film positive electrode, when the selenium content was 62%, the first discharge specific capacity of 1 C was 432 mAh\/g, and remained at 385 mAh\/g after 1 300 cycles, showing good cycle stability.<\/div>\n

1.2 V\u1eadt li\u1ec7u c\u1ef1c d\u01b0\u01a1ng<\/h3>\n
V\u1eadt li\u1ec7u graphit hi\u1ec7n l\u00e0 v\u1eadt li\u1ec7u c\u1ef1c d\u01b0\u01a1ng ch\u00ednh, nh\u01b0ng c\u00e1c nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 v\u00e0 \u0111ang kh\u00e1m ph\u00e1 c\u00e1c v\u1eadt li\u1ec7u c\u1ef1c d\u01b0\u01a1ng kh\u00e1c. So v\u1edbi v\u1eadt li\u1ec7u l\u00e0m cat\u1ed1t, v\u1eadt li\u1ec7u anode kh\u00f4ng c\u00f3 \u0111i\u1ec3m n\u00f3ng nghi\u00ean c\u1ee9u r\u00f5 r\u00e0ng. Ch\u1ea5t \u0111i\u1ec7n ph\u00e2n s\u1ebd ph\u00e2n h\u1ee7y m\u1ed9t c\u00e1ch kh\u1eed tr\u00ean b\u1ec1 m\u1eb7t c\u1ee7a c\u1ef1c d\u01b0\u01a1ng graphit trong chu k\u1ef3 \u0111\u1ea7u ti\u00ean c\u1ee7a pin \u0111\u1ec3 t\u1ea1o th\u00e0nh m\u1ed9t m\u00e0ng ph\u00e2n c\u00e1ch pha \u0111i\u1ec7n ph\u00e2n r\u1eafn (SEI), d\u1eabn \u0111\u1ebfn s\u1ef1 m\u1ea5t c\u00f4ng su\u1ea5t kh\u00f4ng th\u1ec3 ph\u1ee5c h\u1ed3i \u0111\u1ea7u ti\u00ean, nh\u01b0ng m\u00e0ng SEI c\u00f3 th\u1ec3 ng\u0103n ch\u1ea5t \u0111i\u1ec7n ph\u00e2n ti\u1ebfp t\u1ee5c ph\u00e2n h\u1ee7y tr\u00ean b\u1ec1 m\u1eb7t than ch\u00ec, do \u0111\u00f3 b\u1ea3o v\u1ec7 \u0111i\u1ec7n c\u1ef1c. Vai tr\u00f2. Zhang Ting c\u1ee7a \u0110\u1ea1i h\u1ecdc S\u01b0 ph\u1ea1m Nam Trung Qu\u1ed1c \u0111\u00e3 th\u00eam dimethyl sulfite l\u00e0m ph\u1ee5 gia t\u1ea1o m\u00e0ng SEI \u0111\u1ec3 c\u1ea3i thi\u1ec7n kh\u1ea3 n\u0103ng t\u01b0\u01a1ng th\u00edch gi\u1eefa c\u1ef1c d\u01b0\u01a1ng graphit v\u00e0 ch\u1ea5t \u0111i\u1ec7n ph\u00e2n v\u00e0 c\u1ea3i thi\u1ec7n hi\u1ec7u su\u1ea5t \u0111i\u1ec7n h\u00f3a c\u1ee7a pin. M\u1ed9t s\u1ed1 nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 s\u1eed d\u1ee5ng v\u1eadt li\u1ec7u t\u1ed5ng h\u1ee3p nano-titanate-carbon l\u00e0m v\u1eadt li\u1ec7u c\u1ef1c d\u01b0\u01a1ng, v\u00e0 ph\u1ee7 ZnO, Al 2 O 3 v\u00e0 c\u00e1c v\u1eadt li\u1ec7u kh\u00e1c b\u1eb1ng ph\u00fan x\u1ea1 magnetron \u0111\u1ec3 c\u1ea3i thi\u1ec7n hi\u1ec7u su\u1ea5t t\u1ed1c \u0111\u1ed9 v\u00e0 \u0111\u1ed9 \u1ed5n \u0111\u1ecbnh chu k\u1ef3; nhi\u1ec7t ph\u00e2n s\u1ea5y phun V\u1eadt li\u1ec7u an\u1ed1t h\u1ed7n h\u1ee3p silic-cacbon \u0111\u01b0\u1ee3c \u0111i\u1ec1u ch\u1ebf b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p n\u00e0y c\u00f3 c\u00f4ng su\u1ea5t ri\u00eang l\u1ea7n ph\u00f3ng th\u1ee9 nh\u1ea5t l\u00e0 1 033. 2 mAh \/ g \u1edf d\u00f2ng \u0111i\u1ec7n 100 mA \/ g, v\u00e0 hi\u1ec7u su\u1ea5t n\u1ea1p v\u00e0 x\u1ea3 l\u1ea7n \u0111\u1ea7u l\u00e0 77,3%; silicon \/ graphene m\u1ec1m d\u1ebbo t\u1ef1 h\u1ed7 tr\u1ee3 V\u1eadt li\u1ec7u anode m\u00e0ng composite \u0111\u01b0\u1ee3c quay v\u00f2ng 50 l\u1ea7n \u1edf d\u00f2ng \u0111i\u1ec7n 100 mA \/ g, dung l\u01b0\u1ee3ng ri\u00eang v\u1eabn l\u00e0 1 500 mAh \/ g v\u00e0 hi\u1ec7u su\u1ea5t \u0111\u1ed3ng k\u1ebft h\u1ee3p \u0111\u01b0\u1ee3c \u1ed5n \u0111\u1ecbnh \u1edf 99% tr\u1edf l\u00ean. Nguy\u00ean nh\u00e2n l\u00e0 do c\u00e1c t\u1ea5m graphene c\u00f3 \u0111\u1ed9 d\u1eabn \u0111i\u1ec7n v\u00e0 \u0111\u1ed9 m\u1ec1m d\u1ebbo cao.<\/div>\n

1.3 pin lithium ion<\/h3>\n
Ch\u1ea5t \u0111i\u1ec7n ph\u00e2n H\u1ec7 th\u1ed1ng \u0111i\u1ec7n ph\u00e2n cacbonat truy\u1ec1n th\u1ed1ng c\u00f3 c\u00e1c v\u1ea5n \u0111\u1ec1 nh\u01b0 d\u1ec5 ch\u00e1y v\u00e0 k\u00e9m \u1ed5n \u0111\u1ecbnh nhi\u1ec7t. N\u00f3 ph\u00e1t tri\u1ec3n m\u1ed9t h\u1ec7 th\u1ed1ng \u0111i\u1ec7n ph\u00e2n c\u00f3 \u0111i\u1ec3m ch\u1edbp ch\u00e1y cao, kh\u00f4ng b\u1eaft l\u1eeda, c\u1eeda s\u1ed5 \u1ed5n \u0111\u1ecbnh \u0111i\u1ec7n h\u00f3a r\u1ed9ng v\u00e0 kh\u1ea3 n\u0103ng th\u00edch \u1ee9ng nhi\u1ec7t \u0111\u1ed9 r\u1ed9ng. N\u00f3 l\u00e0 v\u1eadt li\u1ec7u ch\u00ednh cho pin lithium ion.<\/div>\n

2 pin NiMH<\/h2>\n
A research hotspot in nickel-metal hydride batteries is hydrogen storage alloy materials. Professor Guo Jin of Guangxi University believes that the rapid cooling at liquid nitrogen temperature and the non-equilibrium treatment of mechanical ball milling regulate the hydrogen storage performance of Mg 17 Al 12 alloy. Associate Professor Lan Zhiqiang of Guangxi University used the heat treatment process combined with mechanical alloying to prepare Mg 90 Li 1 – x Si x (x =0, 2, 4 and 6) composite hydrogen storage materials, and studied the addition of Si to the solid solution storage of Mg-Li system. The effect of hydrogen performance. The introduction of rare earth elements can inhibit the amorphization phenomenon and the disproportionation process of the alloy composition during the hydrogen absorption and desorption cycle, and increase the reversible hydrogen absorption and desorption of the alloy. The conventional hydrogen storage alloy materials on the market are mostly doped with rare earth elements (La). , Ce, Pr, Nd, etc.), but the price of Pr and Nd is higher. Zhu Xilin reported on the application of an AB 5 hydrogen storage alloy not doped with Pr and Nd in a nickel-hydrogen battery. The square battery applied to the electric bus has been safely operated for 100 000 km. Another research hotspot for hydrogen storage materials is metal nitrogen hydrides such as Mg(BH 2 ) 2 -2LiH, 4MgH 2 – Li 3 AlH 6 , Al-Li 3 AiH 6 and NaBH 4 -CO(NH 2 ) 2 . Reducing the particle size and adding an alkali metal additive can improve the hydrogen storage performance of the metal coordination hydrogen storage material, wherein the particle size is reduced, which is mainly achieved by high energy mechanical ball milling. The Amine-Decorated12-Connected MOF CAU-1 material reported by Professor Sun Lixian of Guilin University of Electronic Technology has excellent H 2 , CO 2 and methanol adsorption properties, which are of great significance and application value for CO 2 emission reduction and hydrogen storage. They also developed A variety of aluminum-based alloy hydrogen-generating materials, such as 4MgH 2 -Li 3 AlH 6 , Al-Li 3 AiH 6 and NaBH 4 -CO(NH 2 ) 2 , are used in combination with fuel cells.<\/div>\n

3 si\u00eau t\u1ee5 \u0111i\u1ec7n<\/h2>\n
Vi\u1ec7c t\u00ecm ki\u1ebfm v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c c\u00f3 hi\u1ec7u su\u1ea5t t\u1ed1c \u0111\u1ed9 cao v\u00e0 v\u00f2ng \u0111\u1eddi d\u00e0i l\u00e0 tr\u1ecdng t\u00e2m c\u1ee7a nghi\u00ean c\u1ee9u v\u1ec1 si\u00eau t\u1ee5 \u0111i\u1ec7n, trong \u0111\u00f3 v\u1eadt li\u1ec7u carbon l\u00e0 v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c si\u00eau t\u1ee5 \u0111i\u1ec7n ph\u1ed5 bi\u1ebfn nh\u1ea5t, ch\u1eb3ng h\u1ea1n nh\u01b0 v\u1eadt li\u1ec7u carbon x\u1ed1p, v\u1eadt li\u1ec7u carbon sinh kh\u1ed1i v\u00e0 v\u1eadt li\u1ec7u carbon composite. M\u1ed9t s\u1ed1 nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 \u0111i\u1ec1u ch\u1ebf v\u1eadt li\u1ec7u carbon aerogel nano v\u00e0 ch\u1ee9ng minh r\u1eb1ng c\u00e1c \u0111\u1eb7c t\u00ednh \u0111i\u1ec7n dung t\u1ed1t \u0111\u1ebfn t\u1eeb c\u1ea5u tr\u00fac khung m\u1ea1ng ba chi\u1ec1u v\u00e0 di\u1ec7n t\u00edch b\u1ec1 m\u1eb7t ri\u00eang c\u1ef1c cao. Nie Pengru, \u0110\u1ea1i h\u1ecdc Khoa h\u1ecdc v\u00e0 C\u00f4ng ngh\u1ec7 Huazhong, \u0111\u00e3 thu \u0111\u01b0\u1ee3c v\u1eadt li\u1ec7u carbon x\u1ed1p ba chi\u1ec1u v\u00e0 s\u1eed d\u1ee5ng n\u00f3 l\u00e0m v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c cho si\u00eau t\u1ee5 \u0111i\u1ec7n trong qu\u00e1 tr\u00ecnh thu h\u1ed3i pin axit-ch\u00ec th\u1ea3i b\u1eb1ng c\u00e1ch r\u1eeda tr\u00f4i \u01b0\u1edbt axit xitric. Ph\u01b0\u01a1ng ph\u00e1p n\u00e0y c\u00f3 th\u1ec3 th\u00fac \u0111\u1ea9y s\u1ef1 k\u1ebft h\u1ee3p ch\u1eb7t ch\u1ebd c\u1ee7a ng\u00e0nh c\u00f4ng nghi\u1ec7p l\u01b0u tr\u1eef n\u0103ng l\u01b0\u1ee3ng v\u00e0 ng\u00e0nh c\u00f4ng nghi\u1ec7p b\u1ea3o v\u1ec7 m\u00f4i tr\u01b0\u1eddng, v\u00e0 t\u1ea1o ra nh\u1eefng l\u1ee3i \u00edch t\u1ed1t v\u1ec1 m\u00f4i tr\u01b0\u1eddng v\u00e0 sinh th\u00e1i. C\u00e1c nh\u00e0 nghi\u00ean c\u1ee9u c\u0169ng kh\u00e1m ph\u00e1 vi\u1ec7c s\u1eed d\u1ee5ng c\u00e1c v\u1eadt li\u1ec7u carbon sinh kh\u1ed1i kh\u00e1c nhau (\u0111\u01b0\u1eddng sucrose, ph\u1ea5n hoa, t\u1ea3o, v.v.) l\u00e0m v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c cho si\u00eau t\u1ee5 \u0111i\u1ec7n. V\u1ec1 kh\u00eda c\u1ea1nh v\u1eadt li\u1ec7u composite, c\u00e1c nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 thi\u1ebft k\u1ebf v\u1eadt li\u1ec7u composite MoO 3 \/ C h\u00ecnh b\u00e1nh sandwich, l\u1edbp \u03b1-MoO 3 v\u00e0 l\u1edbp graphene \u0111\u01b0\u1ee3c xen k\u1ebd v\u00e0 x\u1ebfp ch\u1ed3ng l\u00ean nhau theo chi\u1ec1u ngang, c\u00f3 t\u00ednh ch\u1ea5t \u0111i\u1ec7n h\u00f3a tuy\u1ec7t v\u1eddi; h\u1ed7n h\u1ee3p ch\u1ea5m l\u01b0\u1ee3ng t\u1eed graphene \/ carbon V\u1eadt li\u1ec7u n\u00e0y c\u0169ng c\u00f3 th\u1ec3 \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng l\u00e0m v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c v\u1edbi \u0111i\u1ec7n dung ri\u00eang 256 F \/ g \u1edf d\u00f2ng \u0111i\u1ec7n 0,5 A \/ g. Gi\u00e1o s\u01b0 Liu Zonghuai c\u1ee7a \u0110\u1ea1i h\u1ecdc S\u01b0 ph\u1ea1m Thi\u1ec3m T\u00e2y \u0111\u00e3 chu\u1ea9n b\u1ecb m\u1ed9t v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c nano oxit mangan trung t\u00ednh \u0111\u01b0\u1ee3c gh\u00e9p t\u1eeb c\u00e1c h\u1ea1t nano oxit mangan v\u1edbi di\u1ec7n t\u00edch b\u1ec1 m\u1eb7t ri\u00eang l\u00e0 456 m 2 \/ g v\u00e0 \u0111i\u1ec7n dung ri\u00eang 281 F \/ g v\u1edbi c\u01b0\u1eddng \u0111\u1ed9 d\u00f2ng \u0111i\u1ec7n 0,25 A \/ g. Liu Peipei thu\u1ed9c \u0110\u1ea1i h\u1ecdc C\u00f4ng ngh\u1ec7 Nam Trung Qu\u1ed1c \u0111\u00e3 \u0111i\u1ec1u ch\u1ebf v\u1eadt li\u1ec7u composite NiO-Co 3 O 4 c\u00f3 hoa nano ba chi\u1ec1u v\u1edbi \u0111i\u1ec7n dung ri\u00eang l\u00e0 1 988. 6 F \/ g \u1edf d\u00f2ng \u0111i\u1ec7n 11 A \/ g v\u00e0 t\u1ed1c \u0111\u1ed9 duy tr\u00ec \u0111i\u1ec7n dung trong s\u1ed1 1.500 chu k\u1ef3. 94. 0%; Wang Yijing thu\u1ed9c \u0110\u1ea1i h\u1ecdc Nankai \u0111\u00e3 nghi\u00ean c\u1ee9u c\u01a1 ch\u1ebf t\u0103ng tr\u01b0\u1edfng, c\u1ea5u tr\u00fac vi m\u00f4 v\u00e0 hi\u1ec7u su\u1ea5t c\u1ee7a v\u1eadt li\u1ec7u NiCo 2 O 4 v\u1edbi c\u00e1c h\u00ecnh th\u00e1i kh\u00e1c nhau. Tang Ke, t\u1eeb \u0110\u1ea1i h\u1ecdc Khoa h\u1ecdc v\u00e0 Ngh\u1ec7 thu\u1eadt Tr\u00f9ng Kh\u00e1nh, \u0111\u00e3 ph\u00e2n t\u00edch m\u1ed1i quan h\u1ec7 gi\u1eefa \u0111i\u1ec7n tr\u1edf t\u01b0\u01a1ng \u0111\u01b0\u01a1ng v\u00e0 d\u00f2ng s\u1ea1c. M\u00f4 h\u00ecnh m\u1ea1ch t\u01b0\u01a1ng \u0111\u01b0\u01a1ng \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng \u0111\u1ec3 nghi\u00ean c\u1ee9u s\u1ef1 bi\u1ebfn \u0111\u1ed5i c\u1ee7a \u0111i\u1ec7n dung, dung l\u01b0\u1ee3ng l\u01b0u tr\u1eef v\u00e0 hi\u1ec7u su\u1ea5t s\u1ea1c c\u1ee7a si\u00eau t\u1ee5 \u0111i\u1ec7n v\u1edbi d\u00f2ng \u0111i\u1ec7n. Hi\u1ec7u su\u1ea5t l\u01b0u tr\u1eef nhi\u1ec7t \u0111\u1ed9 c\u1ee7a si\u00eau t\u1ee5 \u0111i\u1ec7n \u0111\u00e3 \u0111\u01b0\u1ee3c th\u1ea3o lu\u1eadn. Va ch\u1ea1m.<\/div>\n

4 pin nhi\u00ean li\u1ec7u<\/h2>\n
Vi\u1ec7c th\u01b0\u01a1ng m\u1ea1i h\u00f3a t\u1ebf b\u00e0o nhi\u00ean li\u1ec7u m\u00e0ng trao \u0111\u1ed5i proton (PEMFC) ch\u1ee7 y\u1ebfu b\u1ecb h\u1ea1n ch\u1ebf b\u1edfi chi ph\u00ed v\u00e0 tu\u1ed5i th\u1ecd. Do x\u00fac t\u00e1c s\u1eed d\u1ee5ng trong PEMFC ch\u1ee7 y\u1ebfu l\u00e0 kim lo\u1ea1i qu\u00fd nh\u01b0 Pt n\u00ean r\u1ea5t t\u1ed1n k\u00e9m v\u00e0 d\u1ec5 b\u1ecb ph\u00e2n hu\u1ef7 trong m\u00f4i tr\u01b0\u1eddng l\u00e0m vi\u1ec7c d\u1eabn \u0111\u1ebfn gi\u1ea3m ho\u1ea1t t\u00ednh c\u1ee7a x\u00fac t\u00e1c. Nh\u00e0 nghi\u00ean c\u1ee9u Shao Zhigang t\u1eeb Vi\u1ec7n V\u1eadt l\u00fd H\u00f3a h\u1ecdc \u0110\u1ea1i Li\u00ean thu\u1ed9c Vi\u1ec7n Khoa h\u1ecdc Trung Qu\u1ed1c \u0111\u00e3 b\u00e1o c\u00e1o m\u1ed9t ch\u1ea5t x\u00fac t\u00e1c v\u1ecf l\u00f5i Pd-Pt \u0111\u01b0a v\u00e0o Pd \u0111\u1ec3 gi\u1ea3m l\u01b0\u1ee3ng Pt \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng v\u00e0 t\u0103ng ho\u1ea1t t\u00ednh c\u1ee7a ch\u1ea5t x\u00fac t\u00e1c. Ngo\u00e0i ra, c\u00e1c nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 c\u1ea3i thi\u1ec7n s\u1ef1 t\u01b0\u01a1ng t\u00e1c gi\u1eefa kim lo\u1ea1i v\u00e0 ch\u1ea5t mang b\u1eb1ng c\u00e1ch s\u1eed d\u1ee5ng \u1ed5n \u0111\u1ecbnh polyme, ph\u00e2n nh\u00f3m b\u1ec1 m\u1eb7t v\u00e0 bi\u1ebfn \u0111\u1ed5i c\u1ee5m cacbon b\u1ec1 m\u1eb7t kim lo\u1ea1i \u0111\u1ec3 thu \u0111\u01b0\u1ee3c ch\u1ea5t x\u00fac t\u00e1c kh\u1eed oxy kim lo\u1ea1i PEMFC v\u1edbi ho\u1ea1t t\u00ednh cao v\u00e0 \u0111\u1ed9 \u1ed5n \u0111\u1ecbnh cao. Cao Tai c\u1ee7a H\u1ecdc vi\u1ec7n C\u00f4ng ngh\u1ec7 B\u1eafc Kinh \u0111\u00e3 gi\u1edbi thi\u1ec7u m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p t\u1ed5ng h\u1ee3p nh\u1eb9, chi ph\u00ed th\u1ea5p v\u00e0 quy m\u00f4 l\u1edbn \u0111\u1ec3 t\u1ed5ng h\u1ee3p c\u00e1c \u1ed1ng nano carbon \u0111\u1ed3ng nh\u1ea5t, pha t\u1ea1p nit\u01a1, h\u00ecnh tre v\u1edbi c\u00e1c h\u1ea1t nano coban \u1edf tr\u00ean c\u00f9ng. C\u00e1c s\u1ea3n ph\u1ea9m c\u00f3 \u0111\u1eb7c t\u00ednh tuy\u1ec7t v\u1eddi. Ho\u1ea1t t\u00ednh x\u00fac t\u00e1c oxi h\u00f3a kh\u1eed. C\u00e1c ch\u1ea5t x\u00fac t\u00e1c g\u1ed1c cacbon v\u00e0 c\u00e1c ch\u1ea5t x\u00fac t\u00e1c kh\u00f4ng ph\u1ea3i b\u1ea1ch kim kh\u00e1c cho pin nhi\u00ean li\u1ec7u, c\u00f3 th\u1ec3 thay th\u1ebf c\u00e1c ch\u1ea5t x\u00fac t\u00e1c d\u1ef1a tr\u00ean b\u1ea1ch kim th\u00f4ng th\u01b0\u1eddng, thu \u0111\u01b0\u1ee3c b\u1eb1ng qu\u00e1 tr\u00ecnh cacbon h\u00f3a th\u1ee7y nhi\u1ec7t, crackinh nhi\u1ec7t \u1edf nhi\u1ec7t \u0111\u1ed9 cao, v.v. v\u00e0 c\u00f3 hi\u1ec7u su\u1ea5t t\u01b0\u01a1ng \u0111\u01b0\u01a1ng v\u1edbi c\u00e1c ch\u1ea5t x\u00fac t\u00e1c cacbon platin th\u01b0\u01a1ng m\u1ea1i.<\/div>\n

5 pin kh\u00e1c<\/h2>\n

5. 1 pin ion natri<\/h3>\n
Qu\u00e1 tr\u00ecnh t\u00edch \u0111i\u1ec7n v\u00e0 ph\u00f3ng \u0111i\u1ec7n c\u1ee7a v\u1eadt li\u1ec7u Na 0. 44 MnO 2 \u0111\u01b0\u1ee3c nghi\u00ean c\u1ee9u t\u1ea1i Dai Kehua thu\u1ed9c \u0110\u1ea1i h\u1ecdc Northeastern. Ng\u01b0\u1eddi ta nh\u1eadn th\u1ea5y r\u1eb1ng Mn 2 + \u0111\u01b0\u1ee3c h\u00ecnh th\u00e0nh tr\u00ean b\u1ec1 m\u1eb7t v\u1eadt li\u1ec7u \u1edf th\u1ebf th\u1ea5p. Nh\u1ef1a phenolic nh\u1ef1a d\u1eabn \u0111i\u1ec7n PFM c\u00f3 th\u1ec3 c\u1ea3i thi\u1ec7n c\u00f4ng su\u1ea5t ri\u00eang c\u00f3 th\u1ec3 \u0111\u1ea3o ng\u01b0\u1ee3c c\u1ee7a b\u1ed9t Sn nguy\u00ean ch\u1ea5t. \u0110\u1ec3 \u0111\u1ea1t \u0111\u01b0\u1ee3c s\u1ea1c v\u00e0 x\u1ea3 \u1ed5n \u0111\u1ecbnh. \u0110\u1ea1i h\u1ecdc Zhongnan Xiao Zhongxing et al. thi\u00eau k\u1ebft b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p th\u1ee7y luy\u1ec7n v\u00e0 ph\u01b0\u01a1ng ph\u00e1p pha r\u1eafn \u1edf nhi\u1ec7t \u0111\u1ed9 cao \u0111\u1ec3 t\u1ed5ng h\u1ee3p Na 0. 44 MnO 2 c\u00f3 \u0111\u1ed9 tinh khi\u1ebft cao h\u01a1n, v\u00e0 natri kim lo\u1ea1i \u0111\u01b0\u1ee3c d\u00f9ng l\u00e0m \u0111i\u1ec7n c\u1ef1c \u00e2m \u0111\u1ec3 l\u1eafp r\u00e1p pin d\u1ea1ng n\u00fat, dung l\u01b0\u1ee3ng 0. 5 C chu k\u1ef3 20 l\u1ea7n. T\u1ef7 l\u1ec7 duy tr\u00ec l\u00e0 98,9%; Zhang Junxi thu\u1ed9c tr\u01b0\u1eddng Cao \u0111\u1eb3ng \u0110i\u1ec7n l\u1ef1c Th\u01b0\u1ee3ng H\u1ea3i \u0111\u00e3 t\u1ed5ng h\u1ee3p c\u00e1c tinh th\u1ec3 NaFePO 4 c\u00f3 c\u1ea5u tr\u00fac olivin, \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng l\u00e0m v\u1eadt li\u1ec7u c\u1ef1c \u00e2m cho pin ion natri v\u00e0 c\u00f3 hi\u1ec7u su\u1ea5t \u0111i\u1ec7n h\u00f3a t\u1ed1t. Ph\u00f3 gi\u00e1o s\u01b0 Deng Jianqiu c\u1ee7a \u0110\u1ea1i h\u1ecdc C\u00f4ng ngh\u1ec7 \u0110i\u1ec7n t\u1eed Qu\u1ebf L\u00e2m \u0111\u00e3 \u0111i\u1ec1u ch\u1ebf m\u1ed9t stronti sulfua tuy\u1ebfn t\u00ednh nano b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p th\u1ee7y nhi\u1ec7t v\u00e0 s\u1eed d\u1ee5ng n\u00f3 l\u00e0m v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c \u00e2m cho pin ion natri. V\u1eadt li\u1ec7u c\u00f3 c\u00f4ng su\u1ea5t c\u1ee5 th\u1ec3 ph\u00f3ng \u0111i\u1ec7n \u0111\u1ea7u ti\u00ean l\u00e0 552 mAh \/ g \u1edf 100 mA \/ g. Sau 55 chu k\u1ef3, dung l\u01b0\u1ee3ng duy tr\u00ec l\u00e0 85,5%. N\u00f3 \u0111\u01b0\u1ee3c quay theo chu k\u1ef3 40 l\u1ea7n \u1edf 2 A \/ g v\u00e0 tr\u1edf v\u1ec1 100 mA \/ D\u00f2ng \u0111i\u1ec7n c\u1ee7a g v\u00e0 c\u00f4ng su\u1ea5t ri\u00eang c\u1ee7a ph\u00f3ng \u0111i\u1ec7n \u0111\u01b0\u1ee3c kh\u00f4i ph\u1ee5c v\u1ec1 580 mAh \/ g, ch\u1ee9ng t\u1ecf r\u1eb1ng hi\u1ec7u su\u1ea5t chu k\u1ef3 c\u1ee7a v\u1eadt li\u1ec7u l\u00e0m \u0111i\u1ec7n c\u1ef1c \u00e2m l\u00e0 t\u1ed1t, v\u00e0 c\u1ea5u tr\u00fac c\u00f3 th\u1ec3 \u0111\u01b0\u1ee3c gi\u1eef \u1ed5n \u0111\u1ecbnh sau m\u1ed9t chu k\u1ef3 d\u00f2ng \u0111i\u1ec7n l\u1edbn.<\/div>\n

5. 2 pin lithium-l\u01b0u hu\u1ef3nh<\/h3>\n
Nghi\u00ean c\u1ee9u v\u1ec1 pin lithium-l\u01b0u hu\u1ef3nh hi\u1ec7n \u0111ang t\u1eadp trung v\u00e0o v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c, ch\u1eb3ng h\u1ea1n nh\u01b0 v\u1eadt li\u1ec7u carbon x\u1ed1p, v\u1eadt li\u1ec7u composite, v.v., nh\u1eb1m n\u00e2ng cao \u0111\u1ed9 an to\u00e0n c\u1ee7a pin, tu\u1ed5i th\u1ecd chu k\u1ef3 v\u00e0 m\u1eadt \u0111\u1ed9 n\u0103ng l\u01b0\u1ee3ng. V\u1eadt li\u1ec7u carbon do Zhang Hongzhang thu\u1ed9c Vi\u1ec7n V\u1eadt l\u00fd H\u00f3a h\u1ecdc \u0110\u1ea1i Li\u00ean thu\u1ed9c Vi\u1ec7n Khoa h\u1ecdc Trung Qu\u1ed1c ph\u00e1t tri\u1ec3n c\u00f3 th\u1ec3 t\u00edch l\u1ed7 x\u1ed1p l\u1edbn (> 4. 0 cm 3 \/ g), di\u1ec7n t\u00edch b\u1ec1 m\u1eb7t ri\u00eang cao (> 1 500 m 2 g), v\u00e0 h\u00e0m l\u01b0\u1ee3ng l\u01b0u hu\u1ef3nh cao (> 70%). Trong \u0111i\u1ec1u ki\u1ec7n h\u00e0m l\u01b0\u1ee3ng l\u01b0u hu\u1ef3nh cao (3 mg \/ cm 2), dung l\u01b0\u1ee3ng ri\u00eang c\u1ee7a ph\u00f3ng \u0111i\u1ec7n 0,1 C l\u00e0 1 200 mAh \/ g; Gi\u00e1o s\u01b0 Chen Yong c\u1ee7a \u0110\u1ea1i h\u1ecdc H\u1ea3i Nam s\u1eed d\u1ee5ng Ti 3 C 2 c\u1ee7a c\u1ea5u tr\u00fac \u0111\u00e0n accordion hai chi\u1ec1u l\u00e0m v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c d\u01b0\u01a1ng. K\u1ebft h\u1ee3p v\u1edbi l\u01b0u hu\u1ef3nh \u0111\u1ec3 thu \u0111\u01b0\u1ee3c h\u1ed7n h\u1ee3p S \/ Ti 2 C 3, dung l\u01b0\u1ee3ng ri\u00eang ph\u00f3ng \u0111i\u1ec7n ban \u0111\u1ea7u \u0111\u1ea1t 291 mAh \/ g \u1edf d\u00f2ng \u0111i\u1ec7n 200 mAh \/ g, v\u00e0 dung l\u01b0\u1ee3ng ri\u00eang thu\u1eadn ngh\u1ecbch c\u1ee7a chu tr\u00ecnh v\u1eabn l\u00e0 970 mAh \/ g.<\/div>\n

5. 3 d\u00f2ng pin<\/h3>\n
Nh\u00e0 nghi\u00ean c\u1ee9u Zhang Huamin \u0111\u1ebfn t\u1eeb Vi\u1ec7n H\u00f3a h\u1ecdc v\u00e0 V\u1eadt l\u00fd \u0110\u1ea1i Li\u00ean, Vi\u1ec7n H\u00e0n l\u00e2m Khoa h\u1ecdc Trung Qu\u1ed1c \u0111\u00e3 \u0111\u01b0a ra b\u00e1o c\u00e1o v\u1ec1 ti\u1ebfn \u0111\u1ed9 nghi\u00ean c\u1ee9u v\u00e0 \u1ee9ng d\u1ee5ng c\u00f4ng ngh\u1ec7 l\u01b0u tr\u1eef n\u0103ng l\u01b0\u1ee3ng pin l\u1ecfng, \u0111\u1ed3ng th\u1eddi gi\u1edbi thi\u1ec7u ti\u1ebfn \u0111\u1ed9 ph\u00e1t tri\u1ec3n c\u1ee7a ch\u1ea5t \u0111i\u1ec7n ph\u00e2n pin l\u1ecfng, m\u00e0ng d\u1eabn ion kh\u00f4ng florua v\u00e0 cao c\u00f4ng su\u1ea5t ri\u00eang l\u00f2 ph\u1ea3n \u1ee9ng. V\u00e0 k\u1ebft qu\u1ea3 nghi\u00ean c\u1ee9u trong h\u1ec7 th\u1ed1ng pin l\u01b0u l\u01b0\u1ee3ng. H\u1ecd \u0111\u00e3 ph\u00e1t tri\u1ec3n m\u1ed9t ng\u0103n x\u1ebfp pin d\u00f2ng m\u1eadt \u0111\u1ed9 c\u00f4ng su\u1ea5t cao lo\u1ea1i 32 kW \u0111\u01b0\u1ee3c s\u1ea1c v\u00e0 x\u1ea3 \u1edf m\u1eadt \u0111\u1ed9 d\u00f2ng \u0111i\u1ec7n 120 mA \/ cm 2 v\u1edbi hi\u1ec7u su\u1ea5t n\u0103ng l\u01b0\u1ee3ng 81,2%, cho ph\u00e9p s\u1ea3n xu\u1ea5t quy m\u00f4 l\u1edbn, trong \u0111\u00f3 l\u01b0u l\u01b0\u1ee3ng 5 MW \/ 10 MWh \u1eafc quy H\u1ec7 th\u1ed1ng l\u01b0u tr\u1eef n\u0103ng l\u01b0\u1ee3ng \u0111\u00e3 \u0111\u01b0\u1ee3c th\u1ef1c hi\u1ec7n tr\u00ean l\u01b0\u1edbi \u0111i\u1ec7n.<\/div>\n

6 K\u1ebft lu\u1eadn<\/h2>\n
Pin Lithium-ion, si\u00eau t\u1ee5 \u0111i\u1ec7n v\u00e0 pin nhi\u00ean li\u1ec7u v\u1eabn l\u00e0 tr\u1ecdng t\u00e2m nghi\u00ean c\u1ee9u v\u1ec1 pin; c\u00e1c lo\u1ea1i pin kh\u00e1c, ch\u1eb3ng h\u1ea1n nh\u01b0 pin natri-ion, pin d\u00f2ng ch\u1ea3y v\u00e0 pin lithium-l\u01b0u hu\u1ef3nh, c\u0169ng \u0111ang ph\u00e1t tri\u1ec3n. Tr\u1ecdng t\u00e2m nghi\u00ean c\u1ee9u hi\u1ec7n t\u1ea1i c\u1ee7a c\u00e1c lo\u1ea1i pin kh\u00e1c nhau v\u1eabn l\u00e0 ph\u00e1t tri\u1ec3n v\u1eadt li\u1ec7u \u0111i\u1ec7n c\u1ef1c \u0111\u1ec3 \u0111\u1ea1t \u0111\u01b0\u1ee3c c\u00f4ng su\u1ea5t, hi\u1ec7u su\u1ea5t, hi\u1ec7u su\u1ea5t chu k\u1ef3 v\u00e0 hi\u1ec7u su\u1ea5t an to\u00e0n cao h\u01a1n.<\/div>\n
Gi\u1edbi thi\u1ec7u v\u1ec1 t\u1ea5t c\u1ea3 c\u00e1c v\u1eadt li\u1ec7u \u0111i\u1ec7n ph\u00e2n r\u1eafn<\/div>\n