{"id":1793,"date":"2019-05-22T02:47:44","date_gmt":"2019-05-22T02:47:44","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-the-development-of-quantum-dots-from-definition-to-application\/"},"modified":"2020-05-04T13:12:06","modified_gmt":"2020-05-04T13:12:06","slug":"the-development-of-quantum-dots-from-definition-to-application","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/vi\/su-phat-trien-cua-cham-luong-tu-tu-dinh-nghia-den-ung-dung\/","title":{"rendered":"S\u1ef1 ph\u00e1t tri\u1ec3n c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed - t\u1eeb \u0111\u1ecbnh ngh\u0129a \u0111\u1ebfn \u1ee9ng d\u1ee5ng"},"content":{"rendered":"
\n
S\u1ef1 ph\u00e1t tri\u1ec3n c\u1ee7a c\u00f4ng ngh\u1ec7 nano \u0111\u00e3 \u0111\u00f3ng m\u1ed9t vai tr\u00f2 quan tr\u1ecdng trong nghi\u00ean c\u1ee9u khoa h\u1ecdc trong nh\u1eefng th\u1eadp k\u1ef7 g\u1ea7n \u0111\u00e2y. C\u00e1c v\u1eadt li\u1ec7u nano v\u00f4 t\u1eadn hi\u1ec7n \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng r\u1ed9ng r\u00e3i trong nhi\u1ec1u l\u0129nh v\u1ef1c t\u1eeb x\u00fac t\u00e1c \u0111\u1ebfn y sinh. Trong s\u1ed1 c\u00e1c v\u1eadt li\u1ec7u nano kh\u00e1c nhau, tinh th\u1ec3 nano d\u1ea1ng keo c\u00f3 th\u1ec3 l\u00e0 m\u1ed9t trong nh\u1eefng v\u1eadt li\u1ec7u nh\u00e1nh quan tr\u1ecdng nh\u1ea5t, v\u00e0 n\u00f3 c\u00f3 tri\u1ec3n v\u1ecdng \u1ee9ng d\u1ee5ng m\u1ea1nh m\u1ebd trong nhi\u1ec1u l\u0129nh v\u1ef1c. Paul Alivisatos c\u1ee7a \u0110\u1ea1i h\u1ecdc California t\u1ea1i Berkeley \u0111\u00e3 th\u1ef1c hi\u1ec7n r\u1ea5t nhi\u1ec1u c\u00f4ng tr\u00ecnh \u0111\u1ed9t ph\u00e1 trong l\u0129nh v\u1ef1c nano. \u00d4ng \u0111\u00e3 \u0111\u1eb7t m\u1ed9t c\u00e2u h\u1ecfi nh\u01b0 v\u1eady trong s\u1ed1 \u0111\u1ea7u ti\u00ean c\u1ee7a t\u1ea1p ch\u00ed n\u1ed5i ti\u1ebfng Nano Letters [1]: T\u1ea1i sao m\u1ed9t ph\u1ea1m vi t\u1ef7 l\u1ec7 c\u1ee5 th\u1ec3 nh\u01b0 v\u1eady c\u00f3 th\u1ec3 x\u00e1c \u0111\u1ecbnh m\u1ed9t ph\u1ea1m vi? Khoa h\u1ecdc v\u00e0 m\u1ed9t t\u1ea1p ch\u00ed khoa h\u1ecdc? \u0110i\u1ec3m \u0111\u1eb7c bi\u1ec7t c\u1ee7a thang \u0111o nanomet h\u1ea5p d\u1eabn nh\u01b0 v\u1eady l\u00e0 g\u00ec? \u1ede \u0111\u00e2y, ch\u00fang t\u00f4i \u0111\u00e3 bi\u00ean so\u1ea1n m\u1ed9t ch\u00fa th\u00edch nh\u1ecf \u0111\u1ec3 c\u1ed1 g\u1eafng gi\u1ea3i quy\u1ebft v\u1ea5n \u0111\u1ec1 n\u00e0y b\u1eb1ng c\u00e1ch t\u00f3m t\u1eaft s\u1ef1 ph\u00e1t tri\u1ec3n c\u1ee7a c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed (\u0111\u00f3 l\u00e0 \u0111i\u1ec1u m\u00e0 Paul Alivisatos \u0111\u00f3ng m\u1ed9t vai tr\u00f2 quan tr\u1ecdng trong s\u1ef1 ph\u00e1t tri\u1ec3n c\u1ee7a c\u00e1c v\u1eadt li\u1ec7u ch\u1ea5m l\u01b0\u1ee3ng t\u1eed) trong c\u00e1c l\u0129nh v\u1ef1c kh\u00e1c nhau.<\/div>\n

1. \u0110\u1ecbnh ngh\u0129a<\/h2>\n
N\u00f3i chung, tinh th\u1ec3 nano d\u1ea1ng keo l\u00e0 nh\u1eefng m\u1ea3nh v\u1ee1 c\u1ee7a tinh th\u1ec3 c\u00f3 k\u00edch th\u01b0\u1edbc 1-100 nm \u1edf d\u1ea1ng si\u00eau vi trong dung d\u1ecbch. Do k\u00edch th\u01b0\u1edbc v\u1eadt l\u00fd c\u1ee7a n\u00f3 v\u00e0 k\u00edch th\u01b0\u1edbc t\u1edbi h\u1ea1n c\u1ee7a nhi\u1ec1u \u0111\u1eb7c t\u00ednh, t\u1ef7 l\u1ec7 nguy\u00ean t\u1eed b\u1ec1 m\u1eb7t \u0111\u00e1ng k\u1ec3, nhi\u1ec1u \u0111\u1eb7c t\u00ednh c\u1ee7a tinh th\u1ec3 nano d\u1ea1ng keo cho th\u1ea5y m\u1ed9t hi\u1ec7n t\u01b0\u1ee3ng \u0111\u1ed9c \u0111\u00e1o li\u00ean quan \u0111\u1ebfn k\u00edch th\u01b0\u1edbc [3]. Theo truy\u1ec1n th\u1ed1ng, tinh th\u1ec3 nano keo ch\u1ee7 y\u1ebfu \u0111\u01b0\u1ee3c ph\u00e2n lo\u1ea1i th\u00e0nh tinh th\u1ec3 nano keo kim lo\u1ea1i qu\u00fd v\u00e0 tinh th\u1ec3 nano keo b\u00e1n d\u1eabn. Theo hi\u1ec7u \u1ee9ng giam gi\u1eef l\u01b0\u1ee3ng t\u1eed c\u1ed5 \u0111i\u1ec3n, khi b\u00e1n k\u00ednh h\u00ecnh h\u1ecdc c\u1ee7a tinh th\u1ec3 nano keo b\u00e1n d\u1eabn nh\u1ecf h\u01a1n b\u00e1n k\u00ednh Boole c\u1ee7a v\u1eadt li\u1ec7u kh\u1ed1i, c\u00e1c m\u1ee9c n\u0103ng l\u01b0\u1ee3ng c\u1ee7a v\u00f9ng h\u00f3a tr\u1ecb v\u00e0 v\u00f9ng d\u1eabn s\u1ebd xu\u1ea5t hi\u1ec7n \u1edf d\u1ea1ng ph\u00e2n b\u1ed1 r\u1eddi r\u1ea1c. N\u00f3 ph\u1ea3i li\u00ean quan \u0111\u1ebfn k\u00edch th\u01b0\u1edbc. Do \u0111\u00f3, c\u00e1c nghi\u00ean c\u1ee9u c\u1ed5 \u0111i\u1ec3n \u0111\u00e3 g\u1ecdi c\u00e1c tinh th\u1ec3 nano b\u00e1n d\u1eabn c\u00f3 k\u00edch th\u01b0\u1edbc b\u00e1n k\u00ednh nh\u1ecf h\u01a1n ho\u1eb7c g\u1ea7n v\u1edbi b\u00e1n k\u00ednh Boer c\u1ee7a exciton l\u00e0 c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed.<\/div>\n

\"\"<\/p>\n

H\u00ecnh 1 C\u1ea5u tr\u00fac c\u1ee7a c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed (b\u1ec1 m\u1eb7t v\u00e0 l\u00f5i) [2]<\/div>\n

\"\"<\/p>\n

H\u00ecnh 2 H\u00ecnh \u1ea3nh TEM c\u1ee7a tinh th\u1ec3 nano \u0111\u01a1n ph\u00e2n t\u00e1n CdSe [4]<\/div>\n
At the initial stage of development of quantum dots, research has focused on the field of metal chalcogenides. In 1993, MIT’s Bawendi group [4] injected organometallic compounds into high-temperature solvents, and the compounds were thermally decomposed and nucleated in solution to obtain metal chalcogenides such as cadmium selenide (CdSe) with good dispersibility. Nanocrystalline. These high-quality semiconductor nanocrystals have a diameter size distribution in the range of about 1 nm to 12 nm, have a uniform crystal structure, and exhibit size-dependent light emission and absorption characteristics. This is an early classic of the systematic study of quantum dots in the rapid development of semiconductor nanocrystal research. However, after decades of development research, the concept of quantum dots has also been extended from the original semiconductor nanocrystals, and nowadays, materials such as perovskite quantum dots, carbon quantum dots, and inorganic quantum dots without cadmium have become Research hotspots. Therefore, the application of these emerging materials will also be involved.<\/div>\n

2.Led<\/h2>\n

\"\"<\/p>\n

H\u00ecnh 3 In phun QLED [7]<\/div>\n
As early as 1994, P. Alivisatos et al. first combined CdSe quantum dots with semiconducting polymers for the manufacture of novel organic-inorganic hybrid electroluminescent diodes. By developing new assembly techniques, researchers have constructed multi-layer quantum dots that enable charge transport. The advantages of traditional bulk inorganic semiconductor diodes in thermal, chemical, and mechanical stability have also been retained [5]. However, the organic layer in these devices will have very low carrier mobility and nanocrystalline conductivity, which directly drags the efficiency of the photovoltaic device. By around 2006, S. J. Rosenthal [6] and others prepared an ultra-small CdSe nanocrystal as a white phosphor. The quantum dots are very uniform in size and large in specific surface area, which significantly increases the probability of electrons and holes interacting on the surface of the nanocrystals, so that the Stokes shift of the nanocrystals can reach 40-50 nm and exhibit broad spectrum emission in the visible region. Characteristics. The invention of this new white phosphor has greatly expanded the application prospects of quantum dot light-emitting diodes (QLEDs). In recent years, laboratory preparation of QLED prototype devices has gradually matured in design and mechanism research [7], and the promotion of industrial production of large-area RGB pixel arrays has also become a research hotspot. Nowadays, the development of patterning technologies such as inkjet printing and transfer printing has laid the foundation for the maturity of QLED’s large-area display technology, and has significantly promoted the commercial application of QLED.<\/div>\n

3. H\u00ecnh \u1ea3nh s\u1ed1ng<\/h2>\n

\"\"<\/p>\n

H\u00ecnh 4 C\u00e1c ch\u1ea5m carbon cho h\u00ecnh \u1ea3nh quang h\u1ecdc in vivo [11]<\/div>\n
Fluorescence is a tool that has a wide range of applications in the biological field. Compared with traditional fluorescent dyes, quantum dots have the characteristics of high emission brightness, large molar extinction coefficient, and broad absorption spectrum, and can be used as a substitute for fluorescent dyes or fluorescent proteins. P. Alivisatos et al. [8] used quantum dots for fibroblast labeling in 1998, which has opened up the application of quantum dots as fluorescent probes for biomedical imaging. Nie Shuming’s research team also made pioneering work in the field of imaging. The research team not only used the covalent coupling of zinc sulfide\/cadmium selenide core-shell quantum dots with biomacromolecules as early as 1998 to achieve ultra-sensitive non-isotopic tracing [9], they also realized for the first time in living animals. Tumor targeting and imaging studies [10] have developed diagnostic studies for quantum dot disease. Inorganic nanocrystals, especially cadmium-based nanocrystals, can cause toxic effects on organisms, so the synthesis of quantum dots with excellent biocompatibility has been a research hotspot. For example, research on synthetic copper-based or silver-based quantum dots can effectively reduce the biological toxicity of materials. In addition, the development of metal-free quantum dots is also an important strategy. The carbon dots synthesized by Ya-Ping Sun et al. still retain considerable fluorescence intensity after injection into mice [11]. In addition to toxicity, optimizing the emission region of quantum dots to better conform to near-infrared bio-optical windows is also a challenge for nanocrystalline medical applications.<\/div>\n

4. \u0111i\u1ec1u tr\u1ecb ung th\u01b0<\/h2>\n

\"\"<\/p>\n

H\u00ecnh 5 C\u01a1 ch\u1ebf t\u1ea1o oxy Singlet c\u1ee7a c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed graphene [13]<\/div>\n
Li\u1ec7u ph\u00e1p quang \u0111\u1ed9ng hi\u1ec7n \u0111\u00e3 ph\u00e1t tri\u1ec3n th\u00e0nh m\u1ed9t ch\u01b0\u01a1ng tr\u00ecnh \u0111i\u1ec1u tr\u1ecb ung th\u01b0 \u0111\u01b0\u1ee3c FDA ch\u1ea5p thu\u1eadn. N\u00f3i chung, c\u00e1c lo\u1ea1i thu\u1ed1c c\u1ea3m quang \u0111\u01b0\u1ee3c k\u00edch th\u00edch trong c\u01a1 th\u1ec3 \u0111\u1ec3 t\u1ea1o ra c\u00e1c lo\u1ea1i oxy ph\u1ea3n \u1ee9ng ti\u00eau di\u1ec7t c\u00e1c t\u1ebf b\u00e0o kh\u1ed1i u. Tuy nhi\u00ean, ch\u1ea5t c\u1ea3m quang k\u00e9m tan trong n\u01b0\u1edbc v\u00e0 c\u00f3 xu h\u01b0\u1edbng m\u1ea5t ho\u1ea1t t\u00ednh quang h\u00f3a do k\u1ebft t\u1ee5 trong c\u01a1 th\u1ec3. N\u0103m 2003, nh\u00f3m Burda [12] l\u1ea7n \u0111\u1ea7u ti\u00ean gi\u1ea3i th\u00edch ti\u1ec1m n\u0103ng ph\u00e1t tri\u1ec3n c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed CdSe nh\u01b0 m\u1ed9t ch\u1ea5t c\u1ea3m quang. C\u00e1c \u0111\u1eb7c t\u00ednh quang h\u1ecdc c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed x\u00e1c \u0111\u1ecbnh r\u1eb1ng n\u00f3 l\u00e0 m\u1ed9t ch\u1ea5t h\u1ea5p th\u1ee5 photon m\u1ea1nh m\u1ebd, truy\u1ec1n n\u0103ng l\u01b0\u1ee3ng hi\u1ec7u qu\u1ea3 v\u00e0 ch\u1ee9c n\u0103ng h\u00f3a b\u1ec1 m\u1eb7t c\u1ee7a n\u00f3 gi\u00fap t\u0103ng c\u01b0\u1eddng s\u1ef1 ph\u00e2n t\u00e1n trong c\u01a1 th\u1ec3. \u0110\u1ec3 gi\u1ea3i quy\u1ebft v\u1ea5n \u0111\u1ec1 \u0111\u1ed9c t\u00ednh, Wang Pengfei thu\u1ed9c Vi\u1ec7n V\u1eadt l\u00fd v\u00e0 H\u00f3a h\u1ecdc thu\u1ed9c H\u1ecdc vi\u1ec7n Khoa h\u1ecdc Trung Qu\u1ed1c v\u00e0 nh\u00f3m nghi\u00ean c\u1ee9u chung c\u1ee7a Wenjun Zhang thu\u1ed9c \u0110\u1ea1i h\u1ecdc Th\u00e0nh ph\u1ed1 H\u1ed3ng K\u00f4ng [13] \u0111\u00e3 ph\u00e1t hi\u1ec7n ra r\u1eb1ng c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed graphene c\u00f3 th\u1ec3 t\u1ea1o ra c\u00e1c h\u1ea1t \u0111\u01a1n. oxy v\u00e0 t\u00e1c \u0111\u1ed9ng l\u00ean kh\u1ed1i u s\u1ed1ng \u0111\u1ec3 ti\u00eau di\u1ec7t kh\u1ed1i u. Ngo\u00e0i ra, nghi\u00ean c\u1ee9u g\u1ea7n \u0111\u00e2y \u0111\u00e3 m\u1edf r\u1ed9ng v\u1eadt li\u1ec7u ch\u1ea5m l\u01b0\u1ee3ng t\u1eed \u0111\u1ec3 \u1ee9ng d\u1ee5ng li\u1ec7u ph\u00e1p quang nhi\u1ec7t kh\u1ed1i u v\u00e0 x\u1ea1 tr\u1ecb.<\/div>\n

5. quang h\u1ee3p c\u00f3 l\u1ee3i<\/h2>\n

\"\"<\/p>\n

H\u00ecnh 6 \u01afu \u0111i\u1ec3m \u1ee9ng d\u1ee5ng c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed trong l\u0129nh v\u1ef1c quang h\u1ee3p nh\u00e2n t\u1ea1o [14]<\/div>\n
Theo hi\u1ec7u \u1ee9ng gi\u1edbi h\u1ea1n l\u01b0\u1ee3ng t\u1eed, \u0111\u1ed9 r\u1ed9ng v\u00f9ng c\u1ea5m c\u1ee7a c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed c\u00f3 th\u1ec3 \u0111\u01b0\u1ee3c \u0111i\u1ec1u ch\u1ec9nh nh\u00e2n t\u1ea1o b\u1eb1ng m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p th\u00edch h\u1ee3p, do \u0111\u00f3 v\u00f9ng ph\u00e1t x\u1ea1 h\u1ea5p th\u1ee5 c\u1ee7a c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed c\u00f3 th\u1ec3 bao ph\u1ee7 to\u00e0n b\u1ed9 d\u1ea3i quang ph\u1ed5 \u00e1nh s\u00e1ng nh\u00ecn th\u1ea5y \u0111\u01b0\u1ee3c so v\u1edbi c\u00e1c v\u1eadt li\u1ec7u kh\u1ed1i v\u00e0 ph\u00e2n t\u1eed t\u01b0\u01a1ng \u1ee9ng. thu\u1ed1c nhu\u1ed9m. H\u01a1n n\u1eefa, hi\u1ec7u \u1ee9ng t\u1ea1o exciton v\u00e0 ph\u00e2n t\u00e1ch \u0111i\u1ec7n t\u00edch c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed d\u1ec5 ki\u1ec3m so\u00e1t h\u01a1n n\u00ean vi\u1ec7c \u1ee9ng d\u1ee5ng ch\u1ea5m l\u01b0\u1ee3ng t\u1eed trong l\u0129nh v\u1ef1c x\u00fac t\u00e1c c\u0169ng l\u00e0 m\u1ed9t v\u1ea5n \u0111\u1ec1 h\u1ebft s\u1ee9c quan tr\u1ecdng. Trong nh\u1eefng n\u0103m 1980, nghi\u00ean c\u1ee9u v\u1ec1 vi\u1ec7c bi\u1ebfn \u0111\u1ed5i c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed th\u00e0nh platin ho\u1eb7c ruthenium oxide [15] v\u00e0 c\u00e1c ch\u1ea5t x\u00fac ti\u1ebfn kh\u00e1c c\u00f3 th\u1ec3 x\u00fac t\u00e1c qu\u00e1 tr\u00ecnh th\u1ee7y ph\u00e2n. K\u1ec3 t\u1eeb \u0111\u00f3, c\u00e1c nh\u00e0 nghi\u00ean c\u1ee9u \u0111\u00e3 l\u00e0m vi\u1ec7c \u0111\u1ec3 x\u00e2y d\u1ef1ng qu\u00e1 tr\u00ecnh quang h\u1ee3p nh\u00e2n t\u1ea1o d\u1ef1a tr\u00ean ch\u1ea5m l\u01b0\u1ee3ng t\u1eed v\u00e0 li\u00ean t\u1ee5c t\u1ed1i \u01b0u h\u00f3a hi\u1ec7u su\u1ea5t c\u1ee7a n\u00f3. N\u0103m 2012, m\u1ed9t b\u01b0\u1edbc \u0111\u1ed9t ph\u00e1 quan tr\u1ecdng \u0111\u00e3 \u0111\u01b0\u1ee3c th\u1ef1c hi\u1ec7n trong vi\u1ec7c s\u1ea3n xu\u1ea5t hydro quang x\u00fac t\u00e1c c\u1ee7a h\u1ec7 th\u1ed1ng x\u00fac t\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed. Krauss v\u00e0 c\u1ed9ng s\u1ef1. [16] nh\u1eadn th\u1ea5y r\u1eb1ng sau khi c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed CdSe \u0111\u01b0\u1ee3c ph\u1ee7 b\u1edfi axit lipoic, c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed d\u1ec5 d\u00e0ng li\u00ean k\u1ebft v\u1edbi h\u1ec7 th\u1ed1ng axit lipoic ion niken \u0111\u1ec3 t\u1ea1o th\u00e0nh m\u1ed9t h\u1ec7 x\u00fac t\u00e1c lai. D\u01b0\u1edbi s\u1ef1 chi\u1ebfu x\u1ea1 c\u1ee7a \u00e1nh s\u00e1ng nh\u00ecn th\u1ea5y, h\u1ec7 th\u1ed1ng n\u00e0y c\u00f3 th\u1ec3 duy tr\u00ec s\u1ea3n xu\u1ea5t hydro ho\u1ea1t \u0111\u1ed9ng trong \u00edt nh\u1ea5t 360 gi\u1edd (n\u0103ng su\u1ea5t l\u01b0\u1ee3ng t\u1eed l\u00ean \u0111\u1ebfn 36%), c\u1ea3i thi\u1ec7n \u0111\u00e1ng k\u1ec3 tri\u1ec3n v\u1ecdng \u1ee9ng d\u1ee5ng c\u1ee7a ch\u1ea5t x\u00fac t\u00e1c phi kim lo\u1ea1i qu\u00fd. Cho \u0111\u1ebfn nay, sau nhi\u1ec1u th\u1eadp k\u1ef7 ph\u00e1t tri\u1ec3n c\u1ee7a c\u00e1c h\u1ec7 th\u1ed1ng quang h\u1ee3p nh\u00e2n t\u1ea1o \u0111\u00e3 b\u01b0\u1edbc v\u00e0o giai \u0111o\u1ea1n kh\u00e1m ph\u00e1 s\u1ea3n xu\u1ea5t h\u00e0ng lo\u1ea1t v\u00e0 s\u1eed d\u1ee5ng tr\u00ean quy m\u00f4 l\u1edbn, c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed \u0111\u00e3 t\u1ea1o ra l\u1ee3i th\u1ebf so v\u1edbi kim lo\u1ea1i qu\u00fd v\u1ec1 ngu\u1ed3n thu nh\u1eadn v\u00e0 chi ph\u00ed s\u1ea3n xu\u1ea5t, nh\u01b0ng s\u1ef1 ph\u00e1t tri\u1ec3n c\u1ee7a kh\u00f4ng ch\u1ee9a cadimi m\u00f4i tr\u01b0\u1eddng C\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed \u0111\u00e1p \u1ee9ng \u00e1nh s\u00e1ng c\u00f3 th\u1ec3 nh\u00ecn th\u1ea5y v\u00e0 th\u00e2n thi\u1ec7n (ch\u1eb3ng h\u1ea1n nh\u01b0 c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed k\u1ebdm selen) v\u1eabn l\u00e0 m\u1ed9t th\u00e1ch th\u1ee9c \u0111\u1ed1i v\u1edbi vi\u1ec7c tri\u1ec3n khai c\u00e1c h\u1ec7 th\u1ed1ng chuy\u1ec3n \u0111\u1ed5i n\u0103ng l\u01b0\u1ee3ng m\u1edbi.<\/div>\n

6. ch\u1ea5m l\u01b0\u1ee3ng t\u1eed Perovskite<\/h2>\n

\"\"<\/p>\n

H\u00ecnh 7 C\u1ea5u tr\u00fac v\u00e0 t\u00ednh ch\u1ea5t c\u1ee7a ch\u1ea5m l\u01b0\u1ee3ng t\u1eed perovskite perovskite bismuth-ch\u00ec halogen [17]<\/div>\n
So far, metal sulfide nanocrystals are the best-developed and most in-depth quantum dot materials, and they have the widest range of applications. In the past five years, quantum dots with a crystal structure of perovskite have become an emerging research hotspot. This new type of quantum dot is no longer a metal sulfide. Instead, it is a metal halide. A metal halide with a perovskite structure exhibits unique properties such as superconductivity and ferroelectric properties that are not available in conventional quantum dots. The earliest organic-inorganic hybrid perovskite nanocrystals have the disadvantage of being extremely sensitive to environmental factors such as oxygen and humidity, which limits the development of this material. Almost at the same time, Kovalenko’s research group [17] pioneered the preparation of all-inorganic bismuth-lead halide perovskite quantum dots in 2014. This colloidal quantum dot has a cubic perovskite crystal structure, while the exciton Bohr radius It does not exceed 12 nm and therefore exhibits dimensionally related spectral properties. This emerging material combines the advantages of quantum dots and perovskite materials to extend the potential applications of quantum dots. In the past year or two, perovskite quantum dots have not only been used in photovoltaic cells and optoelectronic display devices, but have not yet been manufactured. New laser materials [18] offer new strategies.<\/div>\n

7. s\u01a1 l\u01b0\u1ee3c<\/h2>\n
Quantum dots are representative materials for explaining the “size effect” of so-called nanomaterials. They have been applied more widely in more and more fields, from optoelectronic devices to photocatalysis to biodetection, covering almost the present and Future daily needs. However, due to space limitations, many quantum dot family member materials such as silicon quantum dots have not been mentioned, and the introduction of material applications has remained in representative research. By summarizing these classic research paradigms, it is expected that the development of quantum dots can be summarized to some extent.<\/div>\n
Ng\u01b0\u1eddi gi\u1edbi thi\u1ec7u<\/div>\n
Ch\u00e0o m\u1eebng b\u1ea1n \u0111\u1ebfn v\u1edbi Nano Letters. Ch\u1eef c\u00e1i Nano. 2001, 1, 1.<\/div>\n
\uf0a7 R. Kagan, E. Lifshitz, EH Sargent, v\u00e0 c\u1ed9ng s\u1ef1. X\u00e2y d\u1ef1ng thi\u1ebft b\u1ecb t\u1eeb c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed d\u1ea1ng keo. Khoa h\u1ecdc. 2016, 353 (6302), aac5523.<\/div>\n
\uf0a7 Peng. M\u1ed9t b\u00e0i lu\u1eadn v\u1ec1 H\u00f3a h\u1ecdc t\u1ed5ng h\u1ee3p c\u1ee7a c\u00e1c tinh th\u1ec3 nano keo. Nghi\u00ean c\u1ee9u Nano. 2009, 2, 425-447.<\/div>\n
\uf0a7 B. Murray, DJ Norris, MG Bawendi. T\u1ed5ng h\u1ee3p v\u00e0 \u0111\u1eb7c t\u00ednh c\u1ee7a tinh th\u1ec3 nano b\u00e1n d\u1eabn g\u1ea7n nh\u01b0 \u0111\u01a1n \u0111\u0129a CdE (E = S, Se, Te). M\u1ee9t. Ch\u00e8m. Soc. 1993, 115, 8706-8715.<\/div>\n
\uf0a7 L. Colvin, MC Schlamp, AP Alivisatos. \u0110i\u1ed1t ph\u00e1t quang \u0111\u01b0\u1ee3c l\u00e0m t\u1eeb tinh th\u1ec3 nano cadmium selenua v\u00e0 m\u1ed9t lo\u1ea1i polyme b\u00e1n d\u1eabn B\u1ea3n ch\u1ea5t. 1994, 370, 354-357.<\/div>\n
\uf0a7 J. Bowers, JR McBride, SJ Rosenthal. Ph\u00e1t x\u1ea1 \u00e1nh s\u00e1ng tr\u1eafng t\u1eeb tinh th\u1ec3 nano Cadmium Selenide c\u00f3 k\u00edch th\u01b0\u1edbc ma thu\u1eadt. M\u1ee9t. Ch\u00e8m. Soc. 2006, 127, 15378-15379.<\/div>\n
\uf0a7 Dai, Y. Deng, X. Peng, et al. \u0110i\u1ed1t ph\u00e1t s\u00e1ng ch\u1ea5m l\u01b0\u1ee3ng t\u1eed cho m\u00e0n h\u00ecnh di\u1ec7n t\u00edch l\u1edbn: H\u01b0\u1edbng t\u1edbi b\u00ecnh minh th\u01b0\u01a1ng m\u1ea1i h\u00f3a. T\u00e0i li\u1ec7u n\u00e2ng cao, 2017, 29, 1607022.<\/div>\n
\uf0a7 Bruchez, M. Moronne, P. Gin, et al. Tinh th\u1ec3 nano b\u00e1n d\u1eabn l\u00e0m Nh\u00e3n sinh h\u1ecdc hu\u1ef3nh quang. Khoa h\u1ecdc 1998, 281, 2013-2016.<\/div>\n
\uf0a7 CW Chan, S. Nie. Ch\u1ea5m l\u01b0\u1ee3ng t\u1eed li\u00ean h\u1ee3p sinh h\u1ecdc \u0111\u1ec3 ph\u00e1t hi\u1ec7n kh\u00f4ng li\u00ean quan si\u00eau nh\u1ea1y. Khoa h\u1ecdc, 1998, 281, 2016-2018.<\/div>\n
\uf0a7 Gao, Y. Cui, RM Levenson, et al. X\u00e1c \u0111\u1ecbnh m\u1ee5c ti\u00eau v\u00e0 h\u00ecnh \u1ea3nh ung th\u01b0 in vivo v\u1edbi c\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed b\u00e1n d\u1eabn. Nat. C\u00f4ng ngh\u1ec7 sinh h\u1ecdc., 2004, 22, 969-976.<\/div>\n
\uf0a7 ST. Yang, L. Cao, PG Luo, et al. D\u1ea5u ch\u1ea5m carbon cho h\u00ecnh \u1ea3nh quang h\u1ecdc trong Vivo. L\u00e0. Ch\u00e8m. Soc. 2009, 131, 11308-11309.<\/div>\n
\uf0a7 CS Samia, X. Chen, C. Burda. Ch\u1ea5m l\u01b0\u1ee3ng t\u1eed b\u00e1n d\u1eabn cho li\u1ec7u ph\u00e1p quang \u0111\u1ed9ng. M\u1ee9t. Ch\u00e8m. Soc., 2003, 125, 15736-15737.<\/div>\n
\uf0a7 Ge, M. Lan, B. Zhou v\u00e0 c\u1ed9ng s\u1ef1. M\u1ed9t t\u00e1c nh\u00e2n tr\u1ecb li\u1ec7u quang \u0111\u1ed9ng ch\u1ea5m l\u01b0\u1ee3ng t\u1eed graphene v\u1edbi kh\u1ea3 n\u0103ng t\u1ea1o oxy \u0111\u01a1n l\u1ebb cao. Nat. Commun. 2014, 5, 4596.<\/div>\n
\uf0a7 XB. Li, CH. Tung, LZ. Ng\u00f4. C\u00e1c ch\u1ea5m l\u01b0\u1ee3ng t\u1eed b\u00e1n d\u1eabn cho qu\u00e1 tr\u00ecnh quang h\u1ee3p nh\u00e2n t\u1ea1o. Rev. Chem. 2018, 2, 160-173.<\/div>\n
\uf0a7 Kalyanasundaram, E. Borgarello, D. Duonghong, et al. S\u1ef1 ph\u00e2n t\u00e1ch c\u1ee7a n\u01b0\u1edbc b\u1eb1ng s\u1ef1 chi\u1ebfu x\u1ea1 \u00e1nh s\u00e1ng nh\u00ecn th\u1ea5y \u0111\u01b0\u1ee3c c\u1ee7a dung d\u1ecbch keo CdS; \u1ee8c ch\u1ebf \u0103n m\u00f2n quang b\u1edfi RuO2. Angew. Ch\u00e8m. Int. Ed. N\u0103m 1981, 20.<\/div>\n
\uf0a7 Han, F. Qiu, R. Eisenberg, et al. Qu\u00e1 tr\u00ecnh ph\u00e1t quang m\u1ea1nh m\u1ebd c\u1ee7a H2 trong n\u01b0\u1edbc b\u1eb1ng tinh th\u1ec3 nano b\u00e1n d\u1eabn v\u00e0 ch\u1ea5t x\u00fac t\u00e1c niken. Khoa h\u1ecdc 2012, 338, 1321-1324.<\/div>\n
\uf0a7 Protesescu, S. Yakunin, MI Bodnarchuk, et al. Tinh th\u1ec3 nano c\u1ee7a Perovskites ch\u00ec Cesium (CsPbX3, X = Cl, Br, v\u00e0 I): V\u1eadt li\u1ec7u quang \u0111i\u1ec7n t\u1eed m\u1edbi l\u1ea1 cho th\u1ea5y s\u1ef1 ph\u00e1t x\u1ea1 s\u00e1ng v\u1edbi gam m\u00e0u r\u1ed9ng. Nano Lett. 2015, 15, 3692-3696.<\/div>\n
\uf0a7 Wang, X. Li, J. Song, et al. T\u1ea5t c\u1ea3 \u2010 Ch\u1ea5m l\u01b0\u1ee3ng t\u1eed Perovskite keo v\u00f4 c\u01a1: M\u1ed9t lo\u1ea1i v\u1eadt li\u1ec7u l\u00e0m v\u1ecf b\u1ecdc m\u1edbi v\u1edbi c\u00e1c \u0111\u1eb7c t\u00ednh thu\u1eadn l\u1ee3i. T\u00e0i li\u1ec7u n\u00e2ng cao, 2015, 27, 7101-7108.<\/div>\n<\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

The development of nanotechnology has played a crucial role in scientific research in recent decades. The endless nanomaterials are now widely used in many fields from catalysis to biomedicine. Among various nanomaterials, colloidal nanocrystals may be one of the most important branch materials, and it has strong application prospects in many fields. Paul Alivisatos of…<\/p>","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"class_list":["post-1793","post","type-post","status-publish","format-standard","hentry","category-materials-weekly"],"jetpack_featured_media_url":"","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts\/1793","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/comments?post=1793"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts\/1793\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/media?parent=1793"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/categories?post=1793"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/tags?post=1793"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}