欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Research status

For WC-Co carbide, the rapidly advancing Powder Bed Fusion (PBF) additive manufacturing (AM) technology has shown unique advantages in producing complex structures of metal parts made of carbide. However, when manufacturing WC-Co carbide with high melting points and high content of hard phases, issues such as difficult-to-eliminate cracks, pores, abnormal grain growth, oxidation decarburization, and brittleness often arise, leading to poor mechanical properties of the produced carbide. In recent years, there have been many reports on the use of Green Additive Manufacturing-Debinding and Sintering (GAM-DS) technology to fabricate WC-Co carbide, which have shown significant advantages in addressing issues such as cracking, abnormal grain growth, oxidation decarburization, and brittleness in PBF carbide. However, the process of preparing green bodies is prone to defects such as pores, interlayer cracks, uneven carbon distribution, and weak local bonding, resulting in problems such as porosity, uneven sintering shrinkage, and uneven microstructure in the sintered bodies. Compared with powder metallurgy, the prepared carbide have relatively low relative densities, and there is a significant gap in mechanical properties.

Brief introduction of research results

Recently, the State Key Laboratory of Powder Metallurgy at Central South University has employed Material Extrusion Additive Manufacturing (MEX) – Debinding and Sintering (DS) technology to successfully produce high-strength and tough WC-9Co cemented carbide with no pores, no cracks, and uniform shrinkage in all directions. Its relative density is approximately 99.7%, and its Vickers hardness, transverse fracture strength, and fracture toughness reach 1525±3HV30, 3492±45MPa, and 20.4±0.5 MPa·m1/2 respectively. The comprehensive mechanical properties are comparable to those of high-performance WC-Co carbide prepared by powder metallurgy processes. The relevant work, titled “Material extrusion additive manufacturing of WC-9Co cemented carbide,” was published in the top international journal “Additive Manufacturing.”

 

research chart

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 2

FIG. 1 Microstructure of MEX WC-9Co cemented carbide green

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 3

FIG. 2 Schematic diagram of stack pore formation of cemented carbide printing green billet: a. MEX stack pore formation; b. Increasing the overlap rate of microfilaments is conducive to reducing the stack porosity of green billet;

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 4

FIG. 3 Microstructure of MEX-DSWC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 5

Figure 4 Micro-CT analysis results of internal defects in MEX-DS WC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 6

Figure 5 Microstructure of WC-9Co cemented carbide: (a) MEX-DS; (b) Press forming – degreasing sintering

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 7

Figure 6 MEX-DS WC-Co carbide Co pool and Co rich zone

WC-Co carbide

Figure 7 Transverse fracture strength and fracture toughness of WC-(8-12)Co cemented carbide prepared by different processes

 

Tóm l??c

Conclusion of the Paper

(1) By calculating the plasticity index of the printed feedstock with a powder loading of 54 Vol.%, the mechanism of green body printing defects was analyzed, and the green body MEX parameters were optimized. Using optimized parameters such as a printing temperature of 150°C, filament overlap rate of 30%, and printing layer thickness of 0.1mm, defect-free green bodies of WC-9Co cemented carbide with a relative density of 98.5% were prepared.

(2) Both excessively high or low temperatures during the debinding process using n-heptane can lead to debinding cracks. Rapid solvent evaporation during the drying process of debound bodies can also result in microcracks. By employing a two-step solvent debinding process, namely, n-heptane debinding at 30°C for 12 hours followed by kerosene debinding at 30°C for 1 hour, the solvent evaporation rate was reduced, resulting in high-quality debound bodies with no noticeable debinding defects and uniform distribution of binder.

(3) Defects in MEX green bodies can lead to the formation of Co-rich regions or pools, abnormal WC grains, residual pores, etc., in WC-Co carbide. These defects can be improved or eliminated during the sintering process through liquid phase flow and rearrangement of WC particles. By optimizing the MEX green body printing and solvent debinding processes to eliminate printing and debinding defects, it is possible to eliminate defects such as sintering pores, cracks, Co pools, abnormal grain growth, etc., in WC-Co carbide, resulting in near-full-density WC-9Co carbide.

(4) By employing MEX green bodies, a two-step solvent debinding process, and a continuous thermal debinding-vacuum pressure sintering process, WC-9Co carbide with uniform microstructure, smaller grain size, and relatively uniform distribution were prepared. The Vickers hardness, transverse fracture strength, and fracture toughness were measured to be 1525±3HV30, 3492±45MPa, and 20.4±0.5MPa·m1/2, respectively. The comprehensive mechanical properties were superior to those reported by recent additive manufacturing technologies and comparable to those of WC-Co carbide prepared by traditional powder metallurgy processes.

Main Innovations of the paper of WC-Co carbide additive manufacturing

The use of WC-Co carbide MEX-DS technology to prepare near-full-density WC-9Co carbide, with a transverse fracture strength reaching 3492MPa and a fracture toughness exceeding 20MPa·m1/2, has significantly improved the transverse fracture strength of WC-Co carbide prepared by current AM methods (ranging from 1500-2000 MPa to 3000-4000MPa with HIP treatment) and increased fracture toughness to above 20MPa·m1/2. The comprehensive mechanical properties are significantly better than those reported by similar studies and comparable to similar products prepared by powder metallurgy. The research results are of great significance for addressing the challenging issues of porosity, cracks, and harmful phases encountered in current carbide additive manufacturing and for the development of carbide additive manufacturing technology.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

少妇无码一区二区二三区| 韩国精品视频一区二区在线观看| 欧美精品性做久久久久久| 美女荒郊野外找男人靠逼| 束缚久久久久久免费高潮| 国产一区二区三区午夜精品久久| 国产伦精品一区二区三区福利| 为什么搜索不到裸体| 亚洲欧美日韩另类| 日本最新免费不卡一区二区三区| 国产精品无码av在线一区| 操美女干逼调教捆绑视频| 老色鬼精品视频二区三区| 亚洲av伦理一区二区三区久久| 国产欧美一二区不卡视频| 操女人大逼视频下载| 美女嫩逼插进大屌| 国产精品你懂的在线资源| 日本精品久久人妻一区二区三区| 骚穴手机在线视频| 91大神精品动漫| 国产免费无码一区二区视频无码| 国产精品免费99久久久| 黑人大吊又操又添| 操逼操的翻白眼视频| 日韩美女一区二区三区香蕉视频| 亚洲成国产人片在线观看| 最新中文字幕av不卡高清| 免费看澡美女逼视频看看| 俩男人插下面的视频| 搞段B片黄色全免费看看| 欧美人人做人人爽人人喊| 91久久愉拍愉拍国产一区| 久久久久久国产A免费观看| 亚洲综合无码一区二区丶| 国产剧情使劲操我逼| 性色av少妇一区二区三区多人| 亚洲av熟妇高潮精品啪啪| 夜色成人免费观看| 骚逼被操视频拳交| 国产欧美日韩一区二区在线观看|