欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for carbideS

Tác ??ng c?a quá trình x? ly nhi?t ??n tính ch?t c? h?c c?a cacbua là gì? 6

S? k?t lu?n

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

大鸡巴插美女小逼逼| 伊人久久亚洲婷婷综合久久| 亚洲中文字幕二区不卡| 日本高清一区二区三区不卡| 欧美一级特黄大片在线看| 男生舔女生下面黄色视频| 97青青草免费在线观看| 爽妇网国产精品24| 精品免费在线观看等| 在线看免费无码a片视频| 大鸡巴操逼 公司| 久久丁香花五月天色婷婷| 24日本精品视频免费| 精品一区二区三区成人免费视频| 搞段B片黄色全免费看看| 大波美女被插的好爽| 大鸡巴插美女小逼逼| 在线观看日韩欧美| 天天摸天天添人人澡| 中文字幕av一区二区三区哈| 国产情侣色综合久久有码| 中日韩VA无码中文字幕| 欧美一区二区三区四区五区精品| 国产女明星一级毛片| 操美女逼逼色逼网| 国产日本欧美激情| 一色道久久88加勒比一| 国产精品久久久69粉嫩| 欧美一级淫片免费播放口| 澳门一区二区免费下线观看| 激情亚洲人妻精品| 大鸡巴操屁眼无码| 五月天国产成人免费视频| 欧美日韩视频在线一区二区| 欧美va精品亚洲va精品| 市长含着秘书的奶头| 黄片观看骚货浪荡| 裸体午夜一级视频| 插女人下面高潮视频| 男人大鸡巴操女人的大逼| 久久综合色伊人九色91|