欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The wear resistance and toughness of carbide woodworking tools are difficult to balance. Usually, tool users can only choose the appropriate grade from many carbide grades based on the specific processing object. Here, we discuss how to further improve the cutting performance of carbide woodworking tools from the tool itself. Currently, the research hotspots on this issue mainly focus on the following aspects:

Improving the grain size of carbide woodworking tools

By refining the grain size of the hard phase, increasing the surface area between grains, and enhancing the bonding force between grains, the strength and wear resistance of carbide?tool materials can be improved. When the WC grain size is reduced to below submicron size, the hardness, toughness, strength, and wear resistance of the material can be improved, and the temperature required for complete densification can also be reduced. The grain size of ordinary carbides is about 3-5 μm, while that of fine-grained carbides is 1-1.5 μm, and that of ultra-fine-grained carbides can be below 0.5 μm. Compared with ordinary carbides with the same composition, the hardness of ultra-fine-grained carbides can be increased by more than 2 HRA, and the bending strength can be increased by 600-800 MPa.

carbides based on ultra-fine WC grains as the matrix, combined with TiAlN PVD coating, can make the cutting edge of the tool highly ductile during interrupted cutting, while also having extremely strong resistance to thermal deformation.

Surface, overall and cyclic heat treatment for carbide woodworking tools

Surface treatment such as nitriding and boriding can effectively improve the wear resistance of carbide?with good toughness. Overall heat treatment can change the composition and structure of the binding phase in carbide?with good wear resistance but poor toughness, reduce the adjacency of WC hard phase, and thus improve the strength and toughness of carbide. The cyclic heat treatment process can relieve or eliminate the stress between grain boundaries, which can comprehensively improve the performance of carbide?materials.

Improving cutting performance by adding rare metals Adding rare metal carbides such as TaC and NbC to carbide?materials can form a complex solid solution structure with the existing hard phase WC, further strengthen the hard phase structure, and also suppress the growth of hard phase grains and enhance the uniformity of the structure. This is highly beneficial for improving the overall performance of carbide. In the ISO standard P, K, and M carbide?grades, there are carbides added with Ta (Nb) C.

carbide woodworking tool

Adding rare earth elements to carbide material

Adding a small amount of rare earth elements such as yttrium to carbide materials can effectively improve the toughness and bending strength of the material, and also improve the wear resistance. This is because rare earth elements can strengthen the hard and binding phases, purify grain boundaries, and improve the wetting of carbide solid solution on the binding phase. carbides added with rare earth elements are most suitable for rough machining, and with abundant rare earth resources in China, they have broad prospects for application in the production of carbide woodworking tools.

Coated carbide woodworking tools

A thin layer of wear-resistant metal compounds, such as TiN and TiC, can be deposited on a tough carbide?substrate using methods such as CVD (chemical vapor deposition), PVD (physical vapor deposition), PVCD (plasma-enhanced chemical vapor deposition), and HVOF (high-velocity oxy-fuel spraying). TiC has high hardness (HV3200) and good wear resistance, so the coating thickness is generally 5-7μm. TiN has lower hardness (HV1800~2100) and lower adhesion to the substrate, but it has good thermal conductivity and high toughness. The coating thickness can reach 8-12μm, and it can combine the toughness of the substrate with the wear resistance of the coating, thereby improving the overall performance of the carbide?tool. Coated carbide?tools have the following advantages:

  1. Good wear resistance and heat resistance, especially suitable for high-speed cutting;
  2. Coated carbidetools have strong resistance to chipping and notch wear, and the tool shape and groove shape are stable;
  3. The chip breaking effect and other cutting performance are good, which is beneficial to the automatic control of the machining process.
  4. After passivation and refining treatment, the substrate of coated carbide tools has high dimensional accuracy, which can meet the requirements of automatic machining for tool change positioning accuracy. However, the use of coating methods still cannot fundamentally solve the problem of poor toughness and impact resistance of carbide substrate materials.

Nanocoating

Nanocoating is a rapidly developing new coating technology in recent years. The grain size of the coating material is generally below 100 nm and it has good cutting performance. In the coating, the surface smoothness of the coating is improved by grain refinement technology, so that the coating surface is smooth, which can improve the anti-friction and anti-adhesion ability of the coating tool. A CVD coating composed of nanoscale TiCN with inhibited crystal growth and nanoscale Al2O3 with inhibited crystal growth can be selected for the front cutting surface. The coating has extremely high toughness and wear resistance. Applying ultra-fine grain TiCN on a special carbide substrate improves the adhesion between the coating and the substrate. Then, an ultra-fine and super smooth FF aluminum-based film is coated on top of it, which increases the surface hardness by 30% and reduces the roughness value by 50%. Compared with ordinary carbides, nanocoating improves processing efficiency by 1.5 times and extends the life of carbide woodworking tools by more than 2 times.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 2

Diamond Coatings

Coating the front surface of a carbide?insert with a CVD diamond film (20μm thick) is a good choice. Although coating peeling can become a serious problem, as long as the coating does not peel, tool wear can be ignored and maintained at 40-50μm. The milling test of medium-density fiberboard using a diamond-coated carbide?insert shows that the diamond film has different degrees of peeling, but the unpeeled film always provides good protection. The tool wear resistance of the diamond coating is nearly twice as high as that of the uncoated one.

With the improvement of coating technology and equipment, the adhesion between the diamond film and the tool substrate will be further improved, and the problem of film peeling will be improved. At present, diamond-coated carbide?materials have been used to manufacture tools for processing reinforced flooring, which is used to cut the aluminum oxide wear-resistant layer on the surface of the reinforced flooring, and the effect is good. However, the purity of CVD diamond polycrystalline film is very high, its hardness (HV9000~1000) is close to natural diamond, and its processability is poor. It is difficult to achieve conventional mechanical processing or electrochemical corrosion. Therefore, diamond-coated carbide?materials are suitable for manufacturing insert blades that do not require regrinding.

5 Ways to Improve the Cutting Performance of Carbide Woodworking Tools 3

S? k?t lu?n

Carbide woodworking tools have become the main variety in the wood processing industry and will continue to occupy an important position in wood cutting for a considerable period in the future. With the continuous improvement of various carbide performance improvement technologies and coating technologies, the cutting performance of carbide woodworking tools will continue to improve.

 

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

国产无码福利一区| 精品无码国产一区二区三区麻豆| 爱爰哦好粗好猛操b视频| 午夜性福福利视频一区二区三区| 精品麻豆国产免费一区二区三区| 波多野结衣福利视频| 久久精品伦一区二区三区| 精品一区二区三区女性色| 黄色三极片在线观看| 国产高清乱码女大生AV| 夜夜嗨av少妇一二三区| 蜜臀av一区二区三区免费观| 久久久精品亚洲Av| 非洲男生操男生屁眼视频| 强伦人妻一区二区三区视频18| 亚洲精品国产人久久| 女人被男人操到高潮视频| 操我好舒服用力视频| 欧美国产日韩a欧美在线| 欧美 日韩 激情 在线| 精品v欧洲高清欧美| 欧美一区二区三区色婷婷月色| 国产天美传媒剧免费观看| 影音先锋亚洲中文综合网| 怎么样操女人的逼亚洲Av黄片段| 国产亚洲欧美中文日韩| 欧洲老妇人操大逼| 草草久性色av综合av| 日本熟人妻中文字幕在线| 爆操大奶子美女视频| 国产高欧美性情一线在线| 亚洲午夜福利视频在线| 国产精品无码av在线一区| 国产亚洲一区白丝在线观看| 日韩av大片一区二区三区| 亚洲 自拍 欧美 一区| 亚洲精品一区二区精华液| 国产欧美一区二区精品久久久| 为什么搜索不到裸体| 正在播放 国产精品推荐| 从后面狠狠的干白嫩少妇|