欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for karbits

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 6

??züm

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

夜夜嗨av少妇一二三区| 男生和女人靠逼视频| 亚洲另类激情在线观看| 国产成人无码91精品一区| 日韩美女叉B视频| 91精品欧美久久久久久| 看一下日本人插逼逼洞视频| 日本 视频 一区二区| 插BB流水水视频| 国产伦精品一区二区三区福利| 中日韩国内精品视频| 操小骚逼高潮视频| 日韩素人精品亚洲热一区| 骚狐狸免费在线观看视频| 怎么样操女人的逼亚洲Av黄片段| 看人妻仑乱A级毛片| 欧美一区二区三区四区五区精品| 亚洲综合网伊人中文| 藏经阁91福利私人试看| 高清国产一区二区| 男人草女人的视频免费看| 一区二中文字幕在线看国产一区| 美女麻豆颜色光屁股眼子| 国产裸模大尺度私拍视频| 99国产精品一区二区| 人人妻人人澡精品99| 三级成人国产高清视频| 亚洲精品伦理熟女国产| 69国产成人综合久久精| 亚洲成国产人片在线观看| 美国业余自由摘花管| 777米奇在线视频无码| 男人草女人的骚逼逼| 中日美女毛5片一区二区三区| 大肉棒操小骚穴视频| 大鸡吧视频在线观看| 天天摸天天添人人澡| 少妇被黑人到高潮喷出白浆| 国产精品一区二区三区色噜噜| 色综合色狠狠天天综合色| 欧美办公室大鸡巴|