欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The surface roughness of a part is a technical requirement that measures the surface processing quality of the part. It significantly impacts the part’s fit, wear resistance, corrosion resistance, and sealing performance. The factors that affect surface roughness mainly include the workpiece material, cutting parameters, machine tool performance, and tool material and geometry parameters.

During the actual machining process, the cutting depth, feed rate, and spindle speed are predetermined and kept constant throughout the cutting process. Therefore, it is essential to optimize the combination of factors affecting surface roughness to obtain the optimal surface quality value. This article begins with the calculation formula of surface roughness and its relationship with chip thickness. It further explores the relationship between surface roughness, cutting depth, and feed rate. Additionally, it examines the impact of various factors on surface roughness through experimentation.

How To Calculate the Surface Roughness in Ball-end Milling 2

Mechanism of Surface Roughness Generation

Mechanism of Residual Height Generation

In curved surface machining, the residual height is mainly formed by the tool moving along the tool path and leaving material on the surface of the workpiece unremoved. As shown in Figure 1, the following parameters are defined: P as the tool contact point, R as the radius of the curved surface, θ as the angle between two radius lines, and n as the normal vector at point P. The stepover distance is represented by d, and it is closely related to the residual height h. Based on Figure 2(a), we can derive the following relationship:

How To Calculate the Surface Roughness in Ball-end Milling 3

In the equation: r represents the tool radius, and kh represents the normal curvature of the machining surface along the cutting feed direction.

 

 

How To Calculate the Surface Roughness in Ball-end Milling 4

When using the sectional plane method to generate tool paths, calculating the normal curvature (kh) can be challenging. In practical machining, an approximation is often used, where a plane approximates the surface between two adjacent tool paths, as shown in Figure 2(b). The stepover distance is considered the normal distance between the sectional planes. In this case, the residual height (h) can be described by the following equation:

How To Calculate the Surface Roughness in Ball-end Milling 5

1.2Calculation of Surface Roughness

Due to the presence of residual height, the surface of the part after mechanical machining will have many uneven peaks and valleys. This microscopic geometric shape is known as surface roughness, as shown in Figure 3. The parameter Ra is defined as the surface roughness, which is given by:

How To Calculate the Surface Roughness in Ball-end Milling 6

In the equation, L represents the sampling length.

How To Calculate the Surface Roughness in Ball-end Milling 7

Zooming in on Figure 3, we obtain Figure 4. When h’ is less than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 86

 

How To Calculate the Surface Roughness in Ball-end Milling 9

When h” is greater than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 10

In the equation, E represents the area of the region. Since y_a needs to ensure that the area above and below the central line is equal, i.e.,

How To Calculate the Surface Roughness in Ball-end Milling 11

In equation (6), p’ and p” are weighting factors. p is closely related to the chip thickness h. After a series of derivations, we can obtain

How To Calculate the Surface Roughness in Ball-end Milling 12

the expression of the sampling area is as follows

How To Calculate the Surface Roughness in Ball-end Milling 13

In the expression:

How To Calculate the Surface Roughness in Ball-end Milling 14

Substituting equations (4) and (5) into equation (8), we obtain:

How To Calculate the Surface Roughness in Ball-end Milling 15

After substituting equation (7) into equation (9) and simplifying through calculations, the relationship between the sampling area of surface roughness and the chip thickness is obtained as follows:

How To Calculate the Surface Roughness in Ball-end Milling 16

According to the above equation, it can be seen that there is a very simple relationship between surface roughness and chip thickness. When milling with a ball-end cutter, the feed per tooth is constant, while the chip thickness varies continuously based on the cutting depth and feed rate.

 

Experimental Data and Analysis

Experimental Conditions

Under steady-state cutting conditions, by varying the cutting depth and feed rate, the surface roughness values are measured for different parameter combinations. The micro-topography of the machined surfaces is observed using a three-dimensional profilometer, and the influence of cutting parameters on surface roughness is analyzed.

The experiment is conducted on the edge part shown in Figure 5, using a FANUC precision machining center machine. The workpiece material is 45# steel, and a high-speed steel milling cutter with a diameter of 12.5mm is selected as the cutting tool. The spindle speed is set at 800 r/min, and the cutting depth varies from 1mm to 6mm. Different feed rates are used for cutting at depths of 1mm, 2mm, 4mm, and 6mm, as illustrated in Figure 6.

 

Data Measurement

After completing the machining of the part, measurement points are selected on the curved section of the part shown in Figure 5. For each set of experimental conditions, data at these measurement points are measured twice, and the average value is taken as the experimental value. The experimental data are presented in Table 1

How To Calculate the Surface Roughness in Ball-end Milling 17

 

How To Calculate the Surface Roughness in Ball-end Milling 18

 

How To Calculate the Surface Roughness in Ball-end Milling 19

 

Data Analysis

From the experimental data, it can be observed that when machining the part using a ball-end cutter and keeping the feed rate constant, the surface roughness increases with an increase in cutting depth (see Figure 7). At lower cutting depths, the surface roughness values are smaller, but excessively small cutting depths result in longer cutting times and lower processing efficiency.

Although there is a certain difference between the experimental values and theoretical values in this study, they are relatively close. Hence, the provided calculation formula in this study can be adopted. For the selected workpiece in this study, the optimum surface roughness is achieved when the cutting depth is 2mm, and the feed rate is 700mm/min.

 

 

roughness

 

3conclusion

The study investigated the influence of various machining parameters on surface roughness during the milling process of the workpiece. The theoretical impact of surface roughness on the surface quality of the workpiece was explored, and a theoretical calculation formula for surface roughness was derived based on its generation mechanism.

Using the trial machining method and different combinations of parameter data, the surface roughness of the machined parts was measured using a three-dimensional profilometer. The calculated theoretical values from the formula were then compared with the experimental values.

The research demonstrated that both the calculation formula and the machining method are feasible and effective in predicting and controlling surface roughness during the milling process.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

欧美日韩亚洲国产av| 欧美日韩亚洲综合国产人| 午夜小视频成人免费看| 国产在线视频好看不卡| 色婷婷人妻av毛片一区二区三区| 国产av大片一区二区三区| 亚洲精品小视频在线观看| 成人精品欧美一级乱黄| 欧美黑人在线一区二区| 精品国自产拍天天青青草原| 亚洲一区二区三区三州| 国产精品午夜福利在线观看| 成人日韩视频中文字幕| 国产精品十八禁亚洲黄污免费观看| 国产目拍亚洲精品区一区| 欧美特色特黄一级大黄片| 国产综合香蕉五月婷在线| 亚洲专区中文字幕在线| 亚洲午夜精品视频在线| 日韩美女偷拍视频久久| 日韩欧美三级中文字幕| 日本高清视频在线观看不卡| 精品欧美日韩一二三区| 日本和亚洲的香蕉视频| 国产又黄又猛又粗又爽的片| 日韩中文字幕在线不卡一区| 国内精品偷拍视频久久| 国产一区二区精品丝袜| 亚洲美女国产精品久久| 99久久精品午夜一区| 欧美在线观看视频免费不卡| 国产亚州欧美一区二区| 国产精品久久香蕉国产线| 久久久精品区二区三区| 日韩一区欧美二区国产| 深夜日本福利在线观看| 免费福利午夜在线观看| 成人精品一级特黄大片| 欧洲亚洲精品自拍偷拍| 青青操视频在线观看国产| 亚洲国产av精品一区二区|