欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

There are mainly two types of 3D printing technologies currently applied in tool manufacturing. One is the Laser Powder Bed Fusion (LPBF) technology, used to manufacture metal tools with special grooves or complex internal cooling channels; the other is the Binder Jetting (BJ) technology.Metal 3D printing technology has gained a foothold in manufacturing complex external structures and internal cooling structures of tools. Renowned tool manufacturers around the world have applied metal additive manufacturing processes to the production of certain types of tools, thereby enhancing tool performance or achieving special tools that traditional manufacturing processes cannot achieve.
Subdivision of Carbide Cutting Tools
Subdivision of Carbide Cutting Tools

Binder Jetting 3D printing technology has enabled the creation of even more complex structures, including carbide?tools with internal cooling channels.Binder Jetting Metal 3D Printing Technology

What is Binder Jetting?

Binder Jetting 3D printing technology combines material jetting and sintering processes to produce fully dense metal components. The lower cost of equipment also means significantly reduced part costs, and low-cost, high-volume parts are crucial for transitioning to production. Binder Jetting metal 3D printing technology has the potential to replace low-volume, high-cost metal injection molding and can also be used to produce complex and lightweight metal parts in other fields, such as gears or turbine impellers, greatly reducing 3D printing costs and shortening delivery times.

Valve Cage Printed by Binder Jetting Metal 3D Printing
Valve Cage Printed by Binder Jetting Metal 3D Printing

In Binder Jetting 3D printing process, ceramic hard material powder particles, including tungsten carbide particles, are bound together layer by layer using a bonding material containing cobalt, nickel, or iron. This bonding material not only serves as the binder between powder layers but also imparts excellent mechanical properties to the product and enables the production of fully dense parts. It can even selectively adjust the bending strength, toughness, and hardness. These 3D printed carbide?molds have greater geometric freedom than molds produced by traditional methods, allowing for the creation of more complex geometries.

Flow Control Stack Printed by Binder Jetting Metal 3D Printing
Flow Control Stack Printed by Binder Jetting Metal 3D Printing

Advantages of 3D Printing Compared to Traditional Machining Processes

Traditional machining processes typically involve compressing tungsten carbide powder uniformly in a flexible bag to manufacture large-sized carbide?components or carbide components with high aspect ratios (such as end mills and drill bit shanks). Although the production cycle of the compaction method is longer than that of molding methods, the manufacturing cost of the tool is lower, making this method more suitable for small-batch production.

carbide?components can also be formed by extrusion or injection molding. Extrusion processes are more suitable for the large-scale production of axially symmetric shaped components, while injection molding processes are typically used for the large-scale production of complex-shaped components. In both molding methods, the grade of tungsten carbide powder is suspended in organic binders, giving the tungsten carbide mixture a paste-like uniformity. The mixture is then extruded through holes or molded into cavities. The characteristics of the tungsten carbide powder grade determine the optimal ratio of powder to binder in the mixture and have a significant impact on the flow of the mixture through the extrusion or into the mold cavity.

After molding, compaction, extrusion, or injection molding of the components, it is necessary to remove the organic binder from the components before the final sintering stage. Sintering removes pores from the components, making them fully (or substantially) dense. During sintering, the metal bonds in the compacted shaped components become liquid, but the components can still maintain their shape due to the combined action of capillary forces and particle contacts.

After sintering, the geometric shape of the components remains unchanged, but the dimensions shrink. To obtain the desired component dimensions after sintering, shrinkage must be considered when designing the tool. When designing the tungsten carbide powder grades used to manufacture each tool, it must be ensured that the correct shrinkage rate is achieved when compressed under appropriate pressure.

Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing
Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing

Furthermore, combining differentiated metal powders with binder jetting and laser powder bed 3D printing technologies, along with manufacturing expertise in post-printing processes, can expedite the production of finished components and molds, thereby reducing downtime and enhancing performance.

Carbide Tools Printed by Binder Jetting Metal 3D Printing
Carbide Tools Printed by Binder Jetting Metal 3D Printing

Meetyou carbide??is also committed to flexible customized design and manufacturing of special metal and alloy components such as high-temperature alloys and refractory metals. Meanwhile, it is upgrading to become an outstanding 3D printing solution provider for high-density, large-sized, and scalable production of tungsten components.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

国产丝袜美女诱惑一区二区| 人妻露脸一区二区三区| 在线免费视频你懂的观看| 91欧美日韩国产在线观看| 欧美国产亚洲一区二区三区| 日系韩系还是欧美久久| 尤物天堂av一区二区| 午夜精品一区免费视频| 亚洲国产成人久久一区二区三区| 福利新区一区二区人口| 真实国产乱子伦对白视频不卡| 日本久久精品在线观看| 日本精品啪啪一区二区三区| 色偷偷偷拍视频在线观看| 欧美国产极品一区二区| 在线免费视频你懂的观看| 久久少妇诱惑免费视频| 一区二区三区四区亚洲另类| 午夜国产成人福利视频| 人妻一区二区三区在线| 久久热在线免费视频精品| 欧美午夜国产在线观看| 欧美黑人在线精品极品| 亚洲精品黄色片中文字幕| 99久久精品免费精品国产| 国产成人精品一区在线观看| 欧美整片精品日韩综合| 正在播放玩弄漂亮少妇高潮| 日韩精品一区二区亚洲| 少妇人妻精品一区二区三区| 国产欧美日韩在线精品一二区| 精品少妇一区二区视频| 丁香六月婷婷基地伊人| 亚洲国产综合久久天堂| 99久久精品午夜一区| 亚洲综合伊人五月天中文| 成人午夜爽爽爽免费视频| 国产成人高清精品尤物| 国产欧美日韩不卡在线视频| 久久国产亚洲精品赲碰热| 日韩精品一区二区三区四区|