欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Analysis of workpiece situation

The object of machining is the laptop shell, and the material is magnesium alloy ME20. Due to the complex structure and high dimensional accuracy requirements of this component, it is formed using the method of milling the entire magnesium alloy sheet. Magnesium alloy machining differs significantly from traditional aluminum alloy machining in aspects such as tool selection, cutting parameter selection, cutting scheme selection, cutting fluid selection, corrosion prevention measures, and chip disposal.

 

The choice of cutting tools

Magnesium alloy has excellent thermal conductivity, a soft material, and low cutting forces, resulting in rapid heat dissipation during the machining process, minimal chip adhesion, and a consequently long tool life. However, tools used for magnesium alloy machining need to maintain a sharp cutting edge because tools with significant edge wear can increase friction during the cutting process. This can lead to a substantial rise in cutting temperature, causing magnesium chips to ignite or even burn, thereby increasing safety risks in the cutting process. Therefore, magnesium alloy machining generally requires the use of new hard alloy tools and prohibits the mixed use of old tools used for other materials.

The general design principles for tools used in machining steel and aluminum also apply to tools used for machining magnesium alloys. Due to the low cutting resistance and relatively low heat capacity of magnesium alloys, the number of teeth on milling cutters for magnesium alloy machining is typically higher than for other metals. Reducing the number of teeth can increase chip space and feed volume, thereby reducing frictional heating, increasing chip clearance, lowering distortion of crushed chips, reducing power consumption, and minimizing heat generation. In our company, when machining magnesium alloys, three-flute hard alloy end mills are generally preferred.

In special cases, such as when the length or diameter specifications of three-flute tools are inadequate, four-flute hard alloy end mills can also be used.

Magnesium Alloy

Selection of cutting fluid

Magnesium alloy, being a soft and easily machinable material, can achieve extremely smooth machining surfaces whether high or low speeds are used, with or without cutting fluid. Dry machining without cutting fluid can reduce processing costs and facilitate the collection and transportation of waste chips. Therefore, many references recommend dry machining.

However, there is a fire risk associated with dry machining when high speeds and fine chips are involved. This necessitates CNC operators to continuously observe the machining process and be ready to extinguish any fires promptly in case of ignition. While this approach poses an unquantifiable risk, it limits operators from adopting a one-person, multiple-machine work mode, which may not be cost-effective in terms of overall processing costs and efficiency.

In addition, magnesium alloy tends to expand when heated. According to data, the linear expansion coefficient of magnesium alloy in the temperature range of 20 to 200°C is between 26.6 and 27.4 μm/(m-°C) (depending on alloy composition). Taking a length dimension of 200mm as an example, a temperature increase of 10°C during the machining process can result in a machining error ranging from 0.0532 to 0.0548mm. It is evident that without cutting fluid for cooling in dry cutting, the magnesium alloy part will quickly expand due to the rapid temperature rise, thereby affecting machining accuracy. Since the laptop shell demands high dimensional accuracy, such temperature effects cannot be ignored.

Considering these two factors, the CNC machining of magnesium alloy in this case adopts “wet machining” with the use of cutting fluid.

Meetyou’s?Processing Recommendations for Magnesium Alloy Laptop Casings 2

Selection of the cutting parameters

The cutting parameters for CNC milling include spindle speed, feed rate, tool cutting depth, and tool cutting width.

We have chosen a domestically produced machine for machining magnesium alloy. The theoretical maximum spindle speed of this machine can reach 8000 r/min, with a maximum feed rate of 15 m/min and machining accuracy of 0.01 mm. Sustaining the machine at the highest speed for extended periods is detrimental to its health. Excessive feed rates, especially for small-batch production, may not save much time but significantly increase the risks of quality issues and equipment failures. Therefore, we have opted for a strategy of large cutting depths and small feed rates to determine our cutting parameters.

Based on our company’s extensive CNC machining experience, the cutting parameters of hard alloy end mills vary in spindle speed and feed rate when machining different materials. However, cutting depth and cutting width generally do not change much. For rough machining, a recommended cutting width is 50% to 100% of the tool diameter (D), and the recommended cutting depth is 0.3 to 0.5D. For finishing, a recommended cutting width is 0.1 to 0.5 mm, and the cutting depth is 0.5 to 1D.

In the development of machining strategies, there is not much difference between machining magnesium alloy and common aluminum alloy materials. The only variation is in the finishing allowance, where a minimum allowance of 0.2 mm is recommended to avoid generating overly fine chips and prevent machining ignition.

Magnesium alloy, being soft and easily machinable, may generate significant cutting heat with high spindle speeds and feed rates, leading to ignition. Therefore, taking into account both efficiency and safety, our company has conservatively adopted spindle speeds and feed rates 1.5 to 2 times those used for cutting aluminum alloy.

Recomenda??es de processamento do Meetyou para carca?as de laptop em liga de magnésio 3

Anti-corrosion measures in magnesium alloy processing

Generally, magnesium alloys are considered chemically active and prone to corrosion, especially when magnesium alloy parts come into contact with cutting fluid during “wet” machining. However, based on our unit’s processing experience, if effective corrosion prevention measures are adopted within a relatively short processing cycle, it will not lead to severe corrosion affecting structural strength or surface roughness.

We employ the following measures to mitigate corrosion in magnesium alloy machining:

1.Magnesium alloy CNC machining must be continuous, and parts soaked in cutting fluid should not be left on the worktable for an extended period, especially overnight.

2.After completing the machining, magnesium alloy parts should be rinsed in clean water to thoroughly dilute residual cutting fluid.

3.Rinsed magnesium alloy parts should be quickly dried using a high-pressure air gun and then wiped dry with clean cotton cloth (see Figure 3).

4.Finished parts can be temporarily placed in a foam box, avoiding contact with other metals.

5.If parts are left for an extended period or during transit, they should be placed in a dry plastic bag, and the bag opening should be folded to ensure relatively low air circulation inside the bag.

In reality, although these methods are simple and practical, they cannot completely eliminate magnesium alloy corrosion. Even if the part’s surface darkens or develops a small amount of black spots, these can be removed by dry sandblasting. Determining whether the level of corrosion on the magnesium alloy surface is acceptable requires thorough communication with technical personnel involved in the surface treatment stage, and the establishment of corresponding annotations and specifications.

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

欧美成人精品一区二区免费看| 中文字幕在线观视频| 视频在线观看一区@99| 99热这里只有精品98| 日本高清一区二区三区水蜜桃| 中文字幕国产精品一区二区三区| 欧洲美熟女乱又伦| 几把日逼嗯嗯视频| 大玩具猛插大bb| 日韩毛片一区视频免费在线观看| 国产成人精品免费视频全| 日本六十五十熟女一级黄色| 91性潮久久久久久久久| 日韩一区二区三区国色天香| 插BB流水水视频| 日韩欧美人妻综合| 日韩伦理视频一区二区三区| 国产高清乱码女大生AV| 男人吃奶大鸡巴操逼视频| 欧美大胆a级视频 一本| 国产裸体视频BBBBB| 日本欧美一区二区三区| 欧美大鸡巴插入骚b| 亚洲精品影片一区二区三区| 草草久性色av综合av| 顶的速度越来越快越| 男生舔女生下面黄色视频| 亚洲av 又黄又爽十大| 日韩美女叉B视频| 91偷自产一区二区三区蜜臀| 欧美日本欧美日本区一区二| 浪潮AV色综合久久天堂| 欧美一区二区三区刘玥| 国产精品免费久久久久久| 日本成人在线一区中文字幕| 快日我啊好爽日我逼| 中文字幕精品字幕一区二区三区| 精品一区二区三区成人免费视频| 泰国无码AV片在线观看| 亚洲午夜福利视频在线| 日本 视频 一区二区|