欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The main methods of metal cutting for thread machining include turning, milling, and tapping. This article introduces the most common thread turning techniques used in production, with the hope of providing useful insights for everyone.

4 Key Fundamental Knowledge on Thread Machining 2

I. Key Fundamental Knowledge on Thread Machining

Terminology Definitions

4 Key Fundamental Knowledge on Thread Machining 3

 

 

4 Key Fundamental Knowledge on Thread Machining 4

① Root② Flank③ Crest

4 Key Fundamental Knowledge on Thread Machining 5

What is the Helix Angle?

  • The helix angle depends on the diameter and pitch of the thread.
  • Adjust the flank clearance angle of the insert by changing the shim.
  • The rake angle is denoted as γ. The most common rake angle is 1°, corresponding to the standard shim in the tool holder.

4 Key Fundamental Knowledge on Thread Machining 6

Cutting Forces During Thread Insertion and Exit

  • The highest axial cutting force in the thread machining process occurs during the tool’s entry and exit from the workpiece.
  • Excessive cutting parameters may cause the insert to move if it is not securely clamped.

4 Key Fundamental Knowledge on Thread Machining 7

Function of the Rake Angle

The rake angle can be set by using a shim underneath the insert in the tool holder. You can refer to the charts in the tool catalog to choose which shim to use. All tool holders come equipped with a standard shim that sets the rake angle to 1°.

4 Key Fundamental Knowledge on Thread Machining 8

Selecting Shims Based on the Rake Angle

The rake angle is influenced by the workpiece diameter and thread pitch. As shown in the diagram below, for a workpiece with a diameter of 40mm and a pitch of 6mm, the required shim must have a 3° rake angle (the standard shim cannot be used).

4 Key Fundamental Knowledge on Thread Machining 9Marking of Threading Inserts and Shims

 

4 Key Fundamental Knowledge on Thread Machining 10

Thread Forms and Their Applications

 

4 Key Fundamental Knowledge on Thread Machining 11

II. Types of Threading Inserts and Clamping Solutions

Multi-Tooth Inserts

4 Key Fundamental Knowledge on Thread Machining 12

Advantages:

  • Reduces the number of tooling passes.
  • Extremely high productivity.

Disadvantages:

  • Requires stable clamping.
  • Requires sufficient tool retraction space after thread machining.

Full-tooth cutter

thread

Advantages:

  • Better control of thread shape.
  • Fewer burrs.

Disadvantages:

  • Each blade can only cut one pitch.

V-tooth cutter.

4 Key Fundamental Knowledge on Thread Machining 13

Advantages:

  • Flexibility, as the same type of blade can be used for machining several pitches. Disadvantages:
  • May result in burr formation, requiring deburring.

 

Ⅲ.three different types of feed methods

The feed method plays an important role in the thread machining process. It affects cutting control, blade wear, thread quality, and tool life.

Improved lateral feed

This feed method is commonly used in most CNC machine tools through a looping program.

  • Chips are easier to form and guide compared to traditional turning types;
  • Axial cutting forces reduce the risk of vibration;
  • The chips are thicker but only contact one side of the blade;
  • Heat transfer to the blade is reduced;
  • Preferred for most thread machining processes.

4 Key Fundamental Knowledge on Thread Machining 14

Radial feed

This is the most commonly used method and also one of the earliest methods that non-CNC lathes could employ.

  • Produces hard “V”-shaped chips.
  • Uniform blade wear.
  • Blade holder exposed to high temperatures, limiting the depth of cut.
  • Suitable for machining fine-pitch threads.
  • May result in vibration and poor chip control when machining coarse-pitch threads.
  • Preferred for machining hardened materials.

4 Key Fundamental Knowledge on Thread Machining 15

Alternating feed of thread machining

  • Recommended for large pitches.
  • Enables uniform blade wear and maximizes tool life when machining threads with extremely large pitches.
  • Chips are guided in two directions, making control difficult.

thread machining

Ⅳ.Methods for Improving Machining Results

4 Key Fundamental Knowledge on Thread Machining 16

Left: Step-down cutting depth (Constant chip area) Achieves a constant chip area, which is the most common method used in CNC programs.

  • The first pass cuts the deepest.
  • Follow the recommended values ??on the feed table in the sample.
  • Balances chip area more evenly.
  • The final pass actually measures around 0.07mm.

Right: Constant cutting depth Regardless of the number of passes, the depth of cut remains the same each time.

  • Requires higher demands on the blade.
  • Ensures optimal chip control.
  • Not applicable for pitches greater than TP1.5mm or 16TP.

Utilizing additional allowance for thread crest finishing: Before machining threads, there’s no need to turn the blank to an exact diameter; utilize additional allowances/material for finishing the thread crest. For finishing crest inserts, leave 0.03~0.07mm of material from the preceding turning process to shape the crest correctly.

 

?? ???

???? ???? ????. ?? ???? * ? ???? ????

男人的天堂日本在线观看| 顶的速度越来越快越| 久久久久久久 亚洲精品| 老司机免费福利午夜入口| 伊人久久丁香色婷婷啪啪| 免费男人和女人黄片| 欧美尤物操逼毛茸茸真爽| 骚穴 操我 视频| 欧美十八一区二区三区| 顶的速度越来越快越| 非洲男生操男生屁眼视频| 国产精品一区二区日本欧美| 大鸡巴插入阴道视频| 精品日韩欧美精品日韩| 啊服慢一点插入逼逼| 青娱乐极品视觉导航| 国产日韩精品v一区二区| 免费女人男人肏逼| 很黄很爽的免费视频大全| 久久久国产精品亚洲无码| 中文国产成人精品久久久| 免费观看的黄视频一级国产| 女人的骚逼免费视频| 激情五月六月婷婷俺来也| av日韩在线观看一区二区三区| 搞段B片黄色全免费看看| 欧美十八一区二区三区| 亚洲女同一区二区三久久精品| 午夜福利在线观看aaa| 咪咪爱一级特黄大片| 日韩精品诱惑一区?区三区| 美女被插入小穴爆操视频| 无码毛片一区二区本码视频| 国产亚洲精品高清视频免费| 大肌巴日小个子女人视频| 欧美人人做人人爽人人喊| 欧美丰满大屁股女人的逼被操视频| 亚洲日韩不卡一区二区三区| 国产精品亚洲一区二区三区下载| 国产乱色国产精品免费播放| 精品精品国产一区二区性色av|