欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

As more and more metal parts manufacturers understand the advantages of powder metallurgy, they begin to look for new and improved methods to use this process. At the same time, they are familiar with and familiar with the current forging process.

But what if you can combine these two technologies to produce forged metal parts with better performance than traditional powder metal (PM)? This is actually possible. In fact, it has a name: powder metal forging.

Let’s understand the use of powder metallurgy forging and traditional powder metallurgy and traditional forging. As a reward, we will show a new alternative that is even more efficient than PM forging…

What Is Powder Metal Forging?

Powder metal forging is the combination of powder metallurgy and forging. Also known as powder forging, this metal forging uses powder materials because they have advantages in the following aspects:

1 forming capacity

2 reduce the number of process steps to produce final components with some potential unique advantages, such as fracture and cracking of connecting rod end cap

3 minimum waste

The rest is forged to produce high-strength parts that will be more durable than traditional powder metal components.

The process of forging powder metal begins when the raw powder is compacted and then sintered. After sintering, but when the part is still at high temperature (above 1800 ° f), the manipulator immediately grabs the part and transfers it to the forging die.

If real estate is related to “l(fā)ocation”, then the powder metal forging process is related to “density”. The purpose is to make PM parts as close to full density as possible. This will provide you with higher performance and higher mechanical properties. If operated properly, the porosity of parts can be eliminated by more than 99%.

Is It Accessible to Produce Metal Parts by Metallurgy Forging? 2

Traditional powder metal forged parts VS sintering parts

Determining whether to use powder forging requires understanding which metals can be forged and which quality is most important for the project. Powder metallurgy can even produce complex parts at a higher productivity than forging.

Powder metal materials can be subject to conventional sintering treatment to improve tensile strength and bending fatigue strength. Due to the inherent net forming ability of powder metallurgy, forming is easier than stamping and processing.

Nevertheless, when strength is absolutely necessary and PM is not enough, metal forging process may be a better choice. Through powder forging, the shape complexity is good, but powder metallurgy is still much better.

However, there are still many examples of powder metallurgy forging and impressive results have been achieved. Take the connecting rod as an example. It has a unique shape. The pin end enters the interior of the piston, and the crank end is a large hole at the bottom, which is molded on the high shaft. With powder metallurgy forging, you can actually make these holes during the forging operation, thus reducing material waste and not requiring too much “flash” to fill the blockage or precision forging indentation.

You can use the traditional forging method to forge 1.2 pounds of raw materials, but with the powder metallurgy forging method, there may be only 1.02 pounds of low-cost iron copper carbon powder. This means reducing secondary processing – giving you a lead in the game.

Is It Accessible to Produce Metal Parts by Metallurgy Forging? 3

It’s even better: ultra high temperature as an alternative to powder forging

Combining powder metallurgy with forging sounds like a win-win, right? This is absolutely true.. If your budget is not a problem.

In order to manufacture forged metal products, manufacturers need to:

1A compactor

2A specially designed sintering furnace

3A forging press

4 other equipment

Making all these machines work is very expensive, and the cost will fall directly on your lap.

Traditional powder metallurgy may not provide the level of performance you want, but traditional forging may be very expensive. So what can we do for people in between and on the edge?

Ultra high temperature sintering can improve the strength and other properties of powder metal parts, making you close to the position of powder metallurgy forging. We define ultra-high temperature sintering as heating iron powder at a temperature close to 2500 ° F.

This is a compromise that may actually give you more than the sum of the parts. Traditional powder metallurgy can provide 50-70% performance of powder metallurgy forging. Ultra high temperature sintering can provide 80-90% of powder metallurgy forging.

By using ultra-high temperature sintering, you can retain the more inherent dimensional accuracy provided by metal powder, but you can also provide mechanical properties close to the forging capacity of powder metallurgy.

One always popular side effect is that using a strict PM process may make material use more efficient. When forging connecting rods, the manufacturer must remove the resulting “flash”. Ultra high temperature sintering can produce a connecting rod to make your strength requirements without manual finishing, which will make it ready for field action.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

欧美成人高清在线播放| 视频一区中文字幕日韩| 91插插插外国一区二区婷婷| 天堂网中文字幕在线视频| 日本高清加勒比免费在线| 伊人久久青草地婷婷综合| 国产免费无遮挡精品视频| 欧美三级精品在线观看| 成年人视频日本大香蕉久久| 天海翼精品久久中文字幕| 欧美一二三区高清不卡| 久久精品国产亚洲av麻豆尤物| 日韩一区二区三区在线欧洲| 日韩一区二区三区在线欧洲| 中文字幕免费观看亚洲视频| 日韩一区二区三区四区乱码视频| 久久99精品国产麻豆婷婷洗澡| 中文文精品字幕一区二区| 在线欧洲免费无线码二区免费| 欧美精品亚洲精品一区| 成人精品亚洲欧美日韩| 欧美日韩免费观看视频| 国产女高清在线看免费观看| 欧美精品日韩精品一区| 午夜色午夜视频之日本| 欧美一区二区三区性视频| 丰满人妻熟妇乱又乱精品古代| 插进她的身体里在线观看骚| 国产一区二区三中文字幕| 99久久精品国产麻豆| 妻子的新妈妈中文字幕| 98精品永久免费视频| 国产成人精品国产成人亚洲| 日韩在线一区中文字幕| 亚洲一区二区三区在线免费| 丰满少妇被猛烈撞击在线视频| 欧美日韩国产自拍亚洲| 欧美偷拍一区二区三区四区| 亚洲熟女少妇精品一区二区三区| 一区二区三区在线不卡免费| 日韩精品综合免费视频|