欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The surface roughness of a part is a technical requirement that measures the surface processing quality of the part. It significantly impacts the part’s fit, wear resistance, corrosion resistance, and sealing performance. The factors that affect surface roughness mainly include the workpiece material, cutting parameters, machine tool performance, and tool material and geometry parameters.

During the actual machining process, the cutting depth, feed rate, and spindle speed are predetermined and kept constant throughout the cutting process. Therefore, it is essential to optimize the combination of factors affecting surface roughness to obtain the optimal surface quality value. This article begins with the calculation formula of surface roughness and its relationship with chip thickness. It further explores the relationship between surface roughness, cutting depth, and feed rate. Additionally, it examines the impact of various factors on surface roughness through experimentation.

How To Calculate the Surface Roughness in Ball-end Milling 2

Mechanism of Surface Roughness Generation

Mechanism of Residual Height Generation

In curved surface machining, the residual height is mainly formed by the tool moving along the tool path and leaving material on the surface of the workpiece unremoved. As shown in Figure 1, the following parameters are defined: P as the tool contact point, R as the radius of the curved surface, θ as the angle between two radius lines, and n as the normal vector at point P. The stepover distance is represented by d, and it is closely related to the residual height h. Based on Figure 2(a), we can derive the following relationship:

How To Calculate the Surface Roughness in Ball-end Milling 3

In the equation: r represents the tool radius, and kh represents the normal curvature of the machining surface along the cutting feed direction.

 

 

How To Calculate the Surface Roughness in Ball-end Milling 4

When using the sectional plane method to generate tool paths, calculating the normal curvature (kh) can be challenging. In practical machining, an approximation is often used, where a plane approximates the surface between two adjacent tool paths, as shown in Figure 2(b). The stepover distance is considered the normal distance between the sectional planes. In this case, the residual height (h) can be described by the following equation:

How To Calculate the Surface Roughness in Ball-end Milling 5

1.2Calculation of Surface Roughness

Due to the presence of residual height, the surface of the part after mechanical machining will have many uneven peaks and valleys. This microscopic geometric shape is known as surface roughness, as shown in Figure 3. The parameter Ra is defined as the surface roughness, which is given by:

How To Calculate the Surface Roughness in Ball-end Milling 6

In the equation, L represents the sampling length.

How To Calculate the Surface Roughness in Ball-end Milling 7

Zooming in on Figure 3, we obtain Figure 4. When h’ is less than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 86

 

How To Calculate the Surface Roughness in Ball-end Milling 9

When h” is greater than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 10

In the equation, E represents the area of the region. Since y_a needs to ensure that the area above and below the central line is equal, i.e.,

How To Calculate the Surface Roughness in Ball-end Milling 11

In equation (6), p’ and p” are weighting factors. p is closely related to the chip thickness h. After a series of derivations, we can obtain

How To Calculate the Surface Roughness in Ball-end Milling 12

the expression of the sampling area is as follows

How To Calculate the Surface Roughness in Ball-end Milling 13

In the expression:

How To Calculate the Surface Roughness in Ball-end Milling 14

Substituting equations (4) and (5) into equation (8), we obtain:

How To Calculate the Surface Roughness in Ball-end Milling 15

After substituting equation (7) into equation (9) and simplifying through calculations, the relationship between the sampling area of surface roughness and the chip thickness is obtained as follows:

How To Calculate the Surface Roughness in Ball-end Milling 16

According to the above equation, it can be seen that there is a very simple relationship between surface roughness and chip thickness. When milling with a ball-end cutter, the feed per tooth is constant, while the chip thickness varies continuously based on the cutting depth and feed rate.

 

Experimental Data and Analysis

Experimental Conditions

Under steady-state cutting conditions, by varying the cutting depth and feed rate, the surface roughness values are measured for different parameter combinations. The micro-topography of the machined surfaces is observed using a three-dimensional profilometer, and the influence of cutting parameters on surface roughness is analyzed.

The experiment is conducted on the edge part shown in Figure 5, using a FANUC precision machining center machine. The workpiece material is 45# steel, and a high-speed steel milling cutter with a diameter of 12.5mm is selected as the cutting tool. The spindle speed is set at 800 r/min, and the cutting depth varies from 1mm to 6mm. Different feed rates are used for cutting at depths of 1mm, 2mm, 4mm, and 6mm, as illustrated in Figure 6.

 

Data Measurement

After completing the machining of the part, measurement points are selected on the curved section of the part shown in Figure 5. For each set of experimental conditions, data at these measurement points are measured twice, and the average value is taken as the experimental value. The experimental data are presented in Table 1

How To Calculate the Surface Roughness in Ball-end Milling 17

 

How To Calculate the Surface Roughness in Ball-end Milling 18

 

How To Calculate the Surface Roughness in Ball-end Milling 19

 

Data Analysis

From the experimental data, it can be observed that when machining the part using a ball-end cutter and keeping the feed rate constant, the surface roughness increases with an increase in cutting depth (see Figure 7). At lower cutting depths, the surface roughness values are smaller, but excessively small cutting depths result in longer cutting times and lower processing efficiency.

Although there is a certain difference between the experimental values and theoretical values in this study, they are relatively close. Hence, the provided calculation formula in this study can be adopted. For the selected workpiece in this study, the optimum surface roughness is achieved when the cutting depth is 2mm, and the feed rate is 700mm/min.

 

 

roughness

 

3conclusion

The study investigated the influence of various machining parameters on surface roughness during the milling process of the workpiece. The theoretical impact of surface roughness on the surface quality of the workpiece was explored, and a theoretical calculation formula for surface roughness was derived based on its generation mechanism.

Using the trial machining method and different combinations of parameter data, the surface roughness of the machined parts was measured using a three-dimensional profilometer. The calculated theoretical values from the formula were then compared with the experimental values.

The research demonstrated that both the calculation formula and the machining method are feasible and effective in predicting and controlling surface roughness during the milling process.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

亚洲精品国产福利在线| 91精品国产综合久久不卡| 国产一区二区三区成人精品| 国产91色综合久久高清| 日本欧美视频在线观看免费| 欧美黑人精品一区二区在线| 色涩一区二区三区四区| 欧美日韩精品一区二区三区不卡| 好吊妞在线免费观看视频| 日本二区三区在线播放| 国产国产精品精品在线| 国产极品粉嫩尤物一区二区| 日韩日韩欧美国产精品| 久久精品国产99国产免费| 极品少妇一区二区三区精品视频| 日韩精品第一区二区三区| 东京热加勒比一区二区三区| 91欧美亚洲精品在线观看| 午夜精品久久久免费视频| 青青操在线视频精品视频| 精品国产品国语在线不卡| 国产一区二区在线免费| 女厕偷窥一区二区三区在线| 成人免费高清在线一区二区| 色哟哟精品一区二区三区| 福利一区二区视频在线| 蜜桃传媒在线正在播放| 九九热在线免费在线观看| 欧美野外在线刺激在线观看| 人妻少妇av中文字幕乱码高清| 成年女人午夜在线视频| 老外那个很粗大做起来很爽| 超薄肉色丝袜脚一区二区| 午夜福利视频六七十路熟女| 精品国产成人av一区二区三区| 老司机精品线观看86| 亚洲中文字幕高清视频在线观看| 久久本道综合色狠狠五月| 国产av大片一区二区三区| 偷拍偷窥女厕一区二区视频| 91日韩在线视频观看|