欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Binders (also known as forming agents) are critical additives in the powder metallurgy process of cemented carbides. They serve three primary functions during the pressing (forming) stage: enhancing powder flowability, improving binding properties, and increasing green strength. These functions ensure the compact maintains its structural integrity during demolding, handling, and prior to sintering.

Don’t Pick the Wrong Binder?for Your?Cemented Carbide?Production 2
The primary functions of binders in cemented carbide manufacturing

In the powder metallurgy of cemented carbides, binders (also called forming agents) play critical roles, including:

Improving Powder Flowability

Reduces interparticle friction, enabling homogeneous mold filling and uniform compaction.

Prevents powder segregation (e.g., separation of WC and Co).

Enhancing Green Strength

Provides sufficient “green strength” to prevent cracking or edge chipping during handling or demolding.

Minimizes elastic aftereffects (post-compaction expansion).

Lubricating the Mold

Reduces friction between powder and die walls, lowering compaction pressure and extending mold life.

Improves surface finish and minimizes defects (e.g., delamination, cracks).

Facilitating Debinding

Must be fully removable (via thermal decomposition or dissolution) before sintering to avoid carbon residue or impurities that degrade alloy properties.

Performance Requirements for Binders
The binder must possess the following characteristics:

Excellent Compatibility

Uniformly mixes with WC-Co powders without agglomeration or sedimentation.

Chemically inert to powders (e.g., no oxidation of cobalt).

Suitable Melting Point and Viscosity

Melting point must align with compaction temperatures (typically room temperature to 100°C) to ensure:

Liquid-phase homogeneity during mixing.

Solid-phase strength during pressing.

Too high moderate viscosity leads to impedes powder flow.

Too low moderate viscosity leads to insufficient binding force.

High Binding Capacity and Lubricity

Binding capacity: Ensures green strength (flexural strength typically ≥5 MPa).

Lubricity: Reduces compaction pressure (e.g., from 600 MPa to 400 MPa).

Controlled Debinding Behavior

Broad debinding temperature range (e.g., 150–500°C) to prevent cracking from rapid volatilization.

Low carbon residue after debinding (<0.1%) to avoid disrupting alloy carbon balance.

Environmental and Safety Compliance

Non-toxic, low volatility (e.g., water-soluble PEG outperforms solvent-based rubber binders).

Meets industrial emission standards (e.g., sulfur- and chlorine-free).

Cost-Effectiveness

Low-cost and readily available (e.g., paraffin wax is more economical than rubber).

Recyclable or easy to dispose of (e.g., PEG can be water-washed and recovered).

Types of Binder

When manufacturing cemented carbide products, selecting the right binder is crucial for quality and efficiency. Here’s a detailed comparison of the three most common binder types to help you make the best choice for your application.

Paraffin Wax
Don’t Pick the Wrong Binder?for Your?Cemented Carbide?Production 3

Characteristics:Composition: Hydrocarbon-based, solid at room temperature with low melting point (50-70°C)

Best for: Small, simple-shaped carbide products

Advantages:

Excellent lubricity reduces die friction

Low debinding temperature (200-400°C) simplifies processing

Cost-effective and readily available

Limitations:

Lower green strength (prone to cracking)

Potential carbon residue during high-temperature debinding

Temperature-sensitive – requires dry storage

Pro Tip: Ideal for mass production of standard inserts where cost is key.
Don’t Pick the Wrong Binder?for Your?Cemented Carbide?Production 4

PEG (Polyethylene Glycol)

Characteristics:Composition: Water-soluble polymer with adjustable molecular weight (PEG-2000/4000)

Best for: Complex-shaped tools and precision molds

Paraffin wax binder

Advantages:

Higher green strength for intricate shapes

Water-soluble – enables aqueous pre-debinding

Minimal carbon residue

Limitations:

Hygroscopic – requires humidity control

Narrow debinding window (200-300°C)

More expensive than paraffin

Pro Tip: The go-to choice for premium cutting tools requiring precision.

PEG binder

Rubber (SBR, etc.)

Characteristics:Composition: Polymer elastomer requiring organic solvents (e.g., acetone)

Best for: Large, high-density components like rolls and mining tools

Advantages:

Highest green strength

Excellent elasticity prevents cracking

Limitations:

Challenging debinding (500°C+)

Potential sulfur contamination

Environmental concerns with solvents

Highest cost

Pro Tip: Reserved for specialized applications where extreme strength is critical.

Compatibility Principles Between Binders and Wet Milling Media

Paraffin Wax

  • Requires organic solvents (e.g., ethanol, acetone)
  • Limited solubility in ethanol alone – heating often needed

Recommended Medium: Ethanol + 10-20% acetone (enhances solubility)

 

PEG (Polyethylene Glycol)

  • Excellent water solubility
  • Requires oxidation protection for cobalt

Recommended Medium: Deionized water + 0.5% antioxidant (e.g., oxalic acid)

 

Rubber Binders

  • Only soluble in strong organic solvents

Recommended Medium: Pure acetone (requires sealed system to prevent evaporation)

 

Performance Comparison of Three Major Binder Systems

Binding Strength

Rubber binders provide the highest strength due to their polymer chain structure, making them suitable for large compacts. PEG offers moderate strength ideal for complex geometries, while paraffin wax has the lowest binding strength as it relies solely on physical bonding.

Debinding Process

Paraffin wax can be removed at relatively low temperatures between 200 to 400°C, though carbon balance must be carefully controlled. PEG requires aqueous pre-debinding followed by thermal cycling, but is sensitive to moisture. Rubber binders demand high-temperature pyrolysis above 500°C and carry risks of sulfur contamination.

Residue Effects

Paraffin may leave carbon residues that affect the WC/Co ratio, requiring adjustment of carbon potential during sintering. PEG leaves virtually no residue, making it excellent for high-purity alloys. Rubber can leave sulfur residues that reduce the alloy’s corrosion resistance.

Economic Considerations

Paraffin wax has the lowest initial cost but may incur additional expenses for carbon management. PEG provides the best value for precision components and mass production. Rubber is the most expensive option and is only justified for specialized heavy-duty applications.

Selection Summary

For cost-sensitive production where simple processes are preferred, paraffin wax is suitable but requires careful control of dimensional stability during debinding. When high precision and environmental considerations are priorities, PEG is the optimal choice though it needs humidity-controlled storage. Rubber binders are reserved for applications requiring maximum strength and large components, provided that high-temperature debinding equipment is available.

Modern developments are creating hybrid binder systems that combine the advantages of these materials, such as PEG’s performance with paraffin’s cost benefits through advanced formulation techniques.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

日本免费精品一区二区三区四区| 日本十八禁大骚逼| 午夜福利在线观看aaa| 黑丝美女被操哭边操边尿| 99热这里只有精品97| 日韩伦理视频一区二区三区| 国产中文字幕在线一区二区三区| 日本高清一区二区三区在线观看| 熟妇丰满大阴户熟妇啪啪| 日韩午夜免费av在线| 色综合色狠狠天天综合色| 欧美国产三级片久久高清| 欧美大鸡巴爆草美女| 日本不卡免费一区二区视频| 久久久久国产AV成人片| 亚洲激情无码视频| 上萬網友分享a级国产乱| 嗯嗯好硬好大啊老公| 中日韩中文字幕无码一本| 午夜性无码视频在线播放| 福利国产第一视频| 伊人久久亚洲婷婷综合久久| 几巴怪物操逼视频| 亚洲一区二区三区四区国产| 亚洲一区二区三区四区国产| 免费黄片视频星空| 中文国产成人精品久久久| 日韩高清精品一区有码在线| 欧美成人3p视频| 操国产骚逼逼逼逼逼逼逼| 美女张开腿让男人桶91| 精品一区二区久久久久无码| 日韩欧美中文字幕国产精品| 日韩精品无码一区二区三区不卡| 亚洲欧美一区二区三区孕妇| 91偷自产一区二区三区蜜臀| 五月天亚洲激情综合av| 大黑屌日本另类肛交| 涩涩屋操美女视频| 日本免费精品一区二区三区四区| 护士毛片在线看中文字幕|