欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Milling a thin-walled ring with a composite structure of bilateral axial supporting parts, shown in Figure 1. The material of the part is 30CrMnSiA steel, which complies with the GJB1951-94 standard, and the hardness is 30~35HRC. The surface roughness of the part is Ra=3.2μm, the symmetry of the two supporting parts is 0.05mm, and the perpendicularity of the bottom surface is 0.05mm, indicating high machining requirements. The wall thickness of the ring body is 2mm, which is too thin, leading to insufficient stiffness.

The main body of the part is a weak stiffness structure, which is prone to instability during mechanical machining, especially when machining the outer wall of the ring and clamping the thin-walled ring.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 2

Machining Analysis

The morphology of the typical weak thin-walled ring with a composite structure of bilateral axial supporting parts after machining with general mechanical machining techniques is shown in Figure 2. The following deficiencies are observed:

(1)Obvious tool marks in the middle of the bilateral axial supporting parts. The upper and lower parts of the bilateral axial supporting parts are formed during two separate machining steps: milling the shape of the thin-walled ring and milling the shape of the bilateral axial supporting parts. Due to the non-coincidence of the process benchmarks between the two steps, obvious tool marks appear in the middle of the bilateral axial supporting parts.

(2)Prominent vibration marks in the middle of the thin-walled ring shape. The wall thickness of the middle part of the ring body is 2mm, which results in significantly insufficient stiffness. During the machining of the thin-walled ring shape, the middle part is prone to instability, leading to the formation of obvious vibration marks. The superposition of these issues collectively results in the machining instability problem becoming a production bottleneck.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 3

Process Optimization

To address the deficiencies of general mechanical machining techniques, a series of compound machining measures have been adopted, including the conversion control of process benchmarks to “bore-face-contour,” the gradual reduction of workpiece stiffness during machining, the reinforcement of stiffness combined with damping and vibration absorption, and the maximization of clamping area and stiffness. These measures aim to achieve stable machining of the weak thin-walled ring with the composite structure of bilateral axial supporting parts.

Precision Conversion of Process Benchmarks

(1) After rough machining the inner shape and end face, precision turn the inner circle and end face to form the process benchmark “bore-face.”

(2) The specific steps for milling the contour positioning benchmark are as follows.

1)Clamp the fixture in the vise (see Figure 3). The bottom surface of the fixture is aligned with the workpiece end face, and the cylindrical surface of the fixture is aligned with the axial direction of the workpiece inner circle. Use a dial indicator to align the fixture bottom surface with a flatness of ≤0.01mm and then secure it.

2) Clamp the workpiece on the fixture (see Figure 4). The workpiece end face and inner bore are tightly against the fixture’s positioning surface and are clamped with a pressure plate.

 

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 4The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 5

 

3)Symmetrically machine two identical precision milling positioning steps on the workpiece contour (see Figure 5). The step height is 20mm, which converts the process benchmark from “bore-face” to “contour.”

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 6

Steady-state Machining Control

(1) The specific steps for milling the thin-walled ring contour are as follows.

1)Clamp the workpiece with a vice on the precision milling positioning step (see Figure 6).

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 7

2) Embed polytetrafluoroethylene or nylon washers into the internal thread relief groove of the workpiece, and then use an external thread mandrel to screw into the internal thread of the workpiece to enhance the stiffness of the annular body cavity.

3) Machine the round corners of the bilateral supporting parts and the shape of the thin-walled ring (see Figure 7).

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 8

(2) The specific steps for milling the shape of the bilateral axial supporting parts are as follows.

Turn the workpiece around, and use an external thread mandrel (see Figure 8) to screw into the internal thread of the workpiece to enhance the stiffness of the annular body cavity.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 9

Clamp the workpiece with a clamping block (see Figure 9), and secure it with a flat-nose pliers.

Perform finish machining on the shape of the bilateral axial supporting parts (see Figure 10).

 

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 10

(3) The specific steps for milling the outer step of the bilateral supporting parts?are as follows.

Clamp the fixture with a flat-nose pliers (see Figure 11).

Axially compress the thin-walled ring body of the workpiece with the fixture (see Figure 12).

Press the expanding ring into the inner circle of the workpiece’s thin-walled ring and align the inner circle of the expanding ring with the edge finder.

Machine the structures such as the outer side of the bilateral supporting parts, the step, chamfer, and thread to completion.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 11The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 12

Machining Process

According to the optimized process plan, the specific machining process is as follows.

(1) Milling the profile positioning reference: The milling process for the profile positioning reference is shown in Figure 13.

(2) Milling the shape of the thin-walled ring: The shape of the thin-walled ring after milling is shown in Figure 14.milling

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

777米奇在线视频无码| 大鸡巴操饿罗斯女人| 日本人色频在线看观| 大鸡巴狂插嫩逼视频| 欧美日本欧美日本区一区二| 国产亚洲一区二区手机在线观看| 好舒服好大好粗视频| 国产女做a爱全免费视频| 中文字幕在线视频一区二区| 中日韩VA无码中文字幕| 阴茎大头插少妇蜜穴视频| 黑人巨茎和中国美女视频| 国产乱精品一区二区三区视频了| 啊啊不要你那痛死爽死了直播一区| 99热这里只有精品97| av中文字幕一区二区精品久久| 春宵福利导航91| 国产午夜精品美女视频露脸| 男人把昆吧放女人屁股里| 国产天堂网一区二区三区 | 国产 自拍 欧美 在线| 香蕉国产精品偷在线| 90岁肥老奶奶毛毛外套| 中文字幕亚洲欧美精品一区二区| 精品一区二区视频在线观看| 一级特黄大片色欧美精品| 日本公共厕所mmm撒尿| 国产精品日韩精品欧美精品| 日本亚欧乱色视频69室| 久久久久亚洲精品无码系列| 欧美精品一区二区三区四区五区| 国产精品一区二区日本欧美| 色熟妇人妻久久中文字幕| 一级美女插逼百度| 60秒动态视频在线观看| 大鸡鸡插我骚逼视频| 在线观看免费视频a v| 白虎鲍鱼抠逼免费看| 国产免费无码一区二区视频无码| 操纯欲女生小穴视频| 美女大骚逼幸福遍穴|