欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

La rugosité fait référence aux irrégularités des petits espaces et des micro-pics et vallées sur la surface du matériau après traitement. Si la douceur est faible, cela peut affecter divers aspects de l'industrie d'utilisation, tels que l'étanchéité, la résistance à l'usure, la stabilité, etc. Comment devrions-nous améliorer les techniques de fabrication pour améliorer la douceur et la précision de traitement des pièces ?

Causes of Roughness Issues

The poor roughness?may be attributed to the following reasons:

1.Improper tool selection: Severe tool wear or poor quality can lead to issues such as burrs and cracks on the drilled surface.

2.Cutting speed too fast or too slow: Excessive cutting speed can result in a rough machining surface, while too slow a speed may lead to an unsmooth surface.

3.Improper use of coolant: Incorrect use of coolant, such as low concentration or contaminated coolant, can also result in an unsmooth surface on the drilled hole.

4.Incorrect machining parameter settings: Incorrect machining parameter settings may cause unstable cutting, thereby resulting in an unsmooth surface on the drilled hole.

roughness

Principles for Resolving Roughness Issues

To address the issue of poor machining roughness, it is necessary to address specific reasons, and the specific methods are as follows:

1.Pay attention to tool selection: Choose high-quality, rigid, and minimally wearing tools.

2.Select the appropriate cutting speed: Adjust the cutting speed based on the machining material and drill bit material to ensure cutting quality.

3.Make rational use of coolant: Choose coolant with an appropriate concentration, maintain the cleanliness of the coolant, and replace it in a timely manner.

4.Set machining parameters reasonably: According to the material and drill bit conditions, set cutting speed, feed rate, and start frequency, among other machining parameters, in a reasonable manner.

Methods to Improve Surface Roughness in Part Machining 2

Improving roughness through cutting parameter adjustments

The three elements of cutting conditions—cutting speed, feed rate, and depth of cut—directly cause tool damage. With the increase in cutting speed, the temperature at the tool tip rises, leading to mechanical, chemical, and thermal wear. A 20% increase in cutting speed results in a 50% reduction in tool life.

The relationship between feed conditions and tool wear occurs within a very narrow range. However, a large feed rate increases cutting temperature and leads to significant wear. Its impact on the tool is smaller compared to cutting speed. While the depth of cut has a smaller impact on the tool than cutting speed and feed rate, during micro-cutting, a hardened layer is produced in the machined material, also affecting tool life.

Users should choose the cutting speed based on factors such as the processed material, hardness, cutting conditions, material type, feed rate, and depth of cut. The selection of the most suitable processing conditions is based on these factors. Ideally, regular and stable wear reaching the tool’s lifespan is considered optimal.

However, in practical operations, the choice of tool life is related to tool wear, changes in the machined dimensions, surface quality, cutting noise, machining heat, etc. When determining processing conditions, research should be conducted based on the actual situation. For difficult-to-machine materials like stainless steel and heat-resistant alloys, coolant can be used, or blades with good rigidity can be selected.

The correct selection of these three elements is a major focus of the principles of metal cutting courses.

Cutting speed (linear speed, circumferential speed) V (meters per minute)

To choose the spindle speed per minute, it is necessary to first determine the appropriate cutting speed V. The selection of V depends on the tool material, workpiece material, and processing conditions.

Matériel d'outil

For carbide, a higher V can be chosen, generally above 100 meters per minute. Technical parameters are usually provided when purchasing blades, indicating the recommended cutting speeds for different materials. For high-speed steel, V can only be lower, generally not exceeding 70 meters per minute, often ranging from 20 to 30 meters per minute.

Workpiece material

For materials with high hardness, a lower V is chosen. For cast iron, a lower V is selected. When the tool material is carbide, a speed of 70 to 80 meters per minute can be chosen. For low carbon steel, V can be above 100 meters per minute, and for non-ferrous metals, a higher speed (100 to 200 meters per minute) can be chosen. For hardened steel and stainless steel, V should be chosen lower.

Conditions de traitement

For rough machining, a lower V is chosen, while for finishing, a higher V is chosen.

If the rigidity system of the machine tool, workpiece, and tool is poor, a lower V should be chosen.

If the numerical control program uses S as the spindle speed per minute, then S should be calculated based on the workpiece diameter and cutting speed V: S (spindle speed per minute) = V (cutting speed) * 1000 / (3.1416 * workpiece diameter).

If the numerical control program uses constant linear speed, then S can directly use the cutting speed V (meters per minute).

Feed Rate (Cutting Depth)

The feed rate, denoted as F, is primarily determined by the surface roughness requirements of the workpiece. In precision machining, where a high surface finish is required, a smaller feed rate is chosen, typically ranging from 0.06 to 0.12 mm per revolution of the spindle. For rough machining, a larger feed rate can be chosen.

The selection of the feed rate is mainly influenced by tool strength and is generally chosen to be 0.3 or higher. When the tool’s main clearance angle is large, resulting in lower tool strength, the feed rate should not be too high. Additionally, considerations should be given to the power of the machine tool, as well as the rigidity of both the workpiece and the tool.

Numerical control programs can use two units for the feed rate: mm/minute or mm/spindle revolution. The units used above are in mm/spindle revolution. If mm/minute is used, the conversion formula is as follows: Feed rate per minute = Feed rate per revolution * Spindle revolutions per minute.

Cutting Depth

In precision machining, the cutting depth is generally chosen to be below 0.5 (in terms of radius). For rough machining, the selection depends on the workpiece, tool, and machine tool conditions. For small lathes (with a maximum processing diameter below 400mm) turning annealed 45# steel, the radial cutting depth generally does not exceed 5mm.

It’s important to note that if the lathe’s spindle speed control uses ordinary frequency conversion speed regulation, when the spindle speed is very low (below 100-200 revolutions per minute), the motor output power will significantly decrease. In such cases, the cutting depth and feed rate can only be chosen to be very small.

Methods to Improve Surface Roughness in Part Machining 3

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

国产妇女乱一性一交| 18岁以下禁看美女的胸| 熟妇丰满大阴户熟妇啪啪| ai换脸久久一区二区亚洲av| 中国熟女色av夜夜嗨| 精品福利一区二区三区在线观看| 大鸡巴操大屁股美女视频| ai换脸久久一区二区亚洲av| 大胸美女被c的嗷嗷叫视频| 久久久久人妻一区精品加勒比| 插逼爽歪歪视频免费| 国产精品久久久久妇| 蜜臀av一区二区三区免费观| 午夜国产精品午夜福利网| 中文字幕一高清免费视频| 日韩在线中文字幕在线视频| 阴茎大头插少妇蜜穴视频| 中文字幕在线观一二三区| 彩虹网免费视频在线观看| 日本一区二区三区高潮喷吹| 亚洲日韩国产欧美久久久| 国产亚洲精品高清视频免费| 国产情侣色综合久久有码| 精品久久av免费一区二区三区| 99草草视频在线精品| 熟女大屁股亚洲一区| 国产精品久久久久妇| 大波美女被插的好爽| 白虎嫩穴抠逼高潮| 为什么搜索不到裸体| 泰国无码AV片在线观看| 人妻夜夜添夜夜无码AV| 亚洲国产综合精品 在线 一区| 男人几把操女人嫩穴| 插欧美美女逼逼逼逼| 精品一区二区三区乱码中文字幕| 大鸡巴操饿罗斯女人| 大鸡巴操屁眼无码| 中文字幕欧美人妻在线| 国产青青操骚货在线观看| 无码视频在线观看|