欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

WC-Co carbide end mills are commonly used for titanium alloy milling. The material characteristics of the tools directly affect the tool life and milling efficiency. Extending the tool life of titanium alloy processing and improving the processing efficiency have always been hot topics in the industry.

In this study, two different high-temperature performance matrix body?materials were prepared by adding trace amounts of TaC (NbC) carbide to the carbide?matrix body. The high-temperature hardness and high-temperature fracture toughness of the two carbides were tested using a high-temperature Vickers hardness tester. Whole carbide?end mills?with the same geometric parameters were prepared based on the two matrix body?materials, and titanium alloy TC4 milling?tests were carried out. By analyzing the tool life and wear patterns, the impact of TaC (NbC) on the wear performance of carbide?milling?tools in high-speed milling was studied.

 

Experimental conditions and testing methods

Two different WC-Co-based carbide?materials with different compositions, named A and B, were prepared for the experiment. Trace amounts of TaC (NbC) carbide were added to material A, with a mass fraction of less than 0.1%. The compositions of the two carbides are shown in Table 1.

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 2

The high-temperature hardness and high-temperature fracture toughness of materials A and B at different temperatures are shown in Figures 2 and 3, respectively.

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 3

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 4

Based on the two carbide?materials A and B, four-flute flat end mills?A and B with the same geometric parameters were prepared accordingly. The specifications and parameters of the tools are shown in Table 2.

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 5

The workpiece material for the milling?test is annealed titanium alloy TC4, with a material hardness of 28.2 HRC. The milling?test was performed on a Mazak Nexus 430A-II vertical machining center, and the machining parameters are shown in Table 3.

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 6

Experimental results and discussion

Under the same milling?conditions, the flank wear curves of end mills?A and B in the machining of titanium alloy TC4 are shown in Figure 4. Figure 5 shows the flank wear morphologies of the two end mills.

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 7

end mills wear

What are the 3 Points of Influence?will TaC (NbC) Have on the Wear of Carbide?End Mills? 8
Fig.5 wear morphology figures of two tools

 

From Figures 4 and 5, it can be seen that when the milling?distance is less than 60m, both types of carbide?end mills?are in the normal wear stage, and the amount of wear on the tool’s back surface increases slowly. This stage is mainly in the early stage of milling, where the tool coating has good wear resistance and insulation, which effectively protects the tool matrix body?during this stage.

However, due to the very high milling?temperature of titanium alloy, as milling?continues, the coating on the tool edge is worn off, exposing the tool matrix body. The tool edge directly bears severe thermal and mechanical shock. As the matrix body?of end mills?A is added with trace alloy carbide TaC (NbC), its high-temperature hardness and high-temperature fracture toughness are higher than that of end mills?B. Therefore, end mills?A has more advantages than end mills?B in terms of the amount of wear on the back surface of the tool.

 

Analysis of end mills failure

After milling?200m using vertical milling cutters A and B, the worn positions of the tool tips were analyzed using a scanning electron microscope. The tip wear morphologies of the two vertical milling cutters are shown in Figure 6.

Quels sont les 3 points d'influence du TaC (NbC) sur l'usure des fraises en carbure?? 9

From Figure 6, it can be seen that the addition of trace amounts of alloy carbide TaC(NbC) in vertical milling cutter A has improved the high-temperature fracture toughness of the WC-Co carbide, suppressed the formation and propagation of cracks within the tool matrix body, and extended the tool life. On the other hand, the high-temperature fracture toughness of vertical milling cutter B is lower than that of A, and when the milling?edge is subjected to severe thermal shock and mechanical loads, cracks are easily formed and continuously expanded, causing the tool matrix body?material at the milling?edge to break and ultimately resulting in tool failure.

Conclusion

Under the same main elements, the carbide?material A with trace amounts of alloy carbide TaC(NbC) has higher high-temperature hardness and fracture toughness than the carbide?material B without adding trace amounts of alloy carbide TaC(NbC). At 800℃, the high-temperature hardness is increased by approximately 14.5%, and the high-temperature fracture toughness is increased by approximately 10.2%.

When milling?titanium alloy TC4 under the same conditions, the tool with added trace amounts of alloy carbide TaC(NbC) has better wear resistance. When the milling?distance is 200m, the amount of wear on the back surface of vertical milling cutter A is 0.076mm, while the amount of wear on the back surface of vertical milling cutter B is 0.13mm.

The high-temperature fracture toughness of the carbide?material A with TaC(NbC) added is better. Under the same milling?conditions, the milling?edge retention of vertical milling cutter A is better, and there are significantly fewer cracks in the worn failure area compared to vertical milling cutter B.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

被大鸡巴操淫液视频| 国产一区二区三区免费观在线| 挺进绝色邻居的紧窄小肉| 亚洲综合青青草原在线| 久久久三级黄片免费视频| 亚洲欧美日韩清纯唯美第一区| 少妇勾搭外卖员在线观看| 亚洲一区二区三成人精品| 国产一二三四五自产| 欧美成人精品一区二区免费看| 国产精品无码av在线一区| 国产精品操大屁股老淑女| 少妇毛片一区二区三区免费视频| 国内精品久久久久精品97| 操逼啊 啊 啊黄色视频| 美女玩奶子和鸡巴| 国产欧美日本韩国一区二区| 欧美一区二区三区四公司| 麻豆91精品96久久久| 骚逼被狂插视频教程| 蜜臀AV无码国产精品尤物| 一区二区三区中文字幕免费在线| 亚洲色欲久久久久综合网| 亚洲国产AV精品一区二区色欲| 大黑屌狂操骚逼视频| 三级片手机在线视频| 无码中文字幕免费一区二区三区| 国产精品视频美熟女一区二区| 美女大鸡操很多水在线看| 亚洲另类激情在线观看| 有关日本黄色录像的视频| 少妇毛片一区二区三区免费视频| 中国女人日逼免费片| 亚洲成国产人片在线观看| 久久久三级黄片免费视频| 国产综合精品一区二区青青| 少妇毛片一区二区三区免费视频| 正在播放 国产精品推荐| 欧美一区二区三区色婷婷月色| 日韩 中文字幕在线最新| 区国产精品搜索视频|