欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for carbures

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 6

Conclusion

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

欧美精品第15页| 国产精品无码一二区免费| 99视频在线看免费视频| 操你的骚逼粉嫩AV| 亚洲一区二区三区大胆视频| 粗大长内射女人视频| 96精品久久久久久蜜臀浪| 亚洲精品成人无码app| 无码中文字幕免费一区二区三区| 少妇无套带白浆嗯呢啊污| 亚洲一区亚洲二区在线观看| 亚洲v国产v天堂a无码| 爆操大奶子美女视频| 阴茎大头插少妇蜜穴视频| 捆绑调教白浆一区二区三区| 精品的极品美女一区二区三区| 使劲操我小穴视频| 五月天亚洲激情综合av| 最新的亚洲欧美中文字幕| 日本潘金莲三级bd高清| 女人张开腿让男人捅个爽| 国产在线中文字幕一区二区三区| 国产精品亚洲一区二区三区极品| 国产高清在线观看一区二区三区| 欧美一区二区三区刘玥| 伊人久久丁香色婷婷啪啪| 亚洲女同一区二区三久久精品| 猛插女人小穴视频| 搞段B片黄色全免费看看| 操逼啊 啊 啊黄色视频| 久久久国产精品2020| 日本熟人妻中文字幕在线| 黄片观看骚货浪荡| 强伦人妻一区二区三区视频18| 中日美女毛5片一区二区三区| 一级特一黄大片欧美久久| 农村胖肥胖女人操逼视频| 亚洲高清中文字幕一区二区三区| 18岁美女破处在线观看| 国产亚洲欧美中文日韩| 免费看女人操逼玩|