欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for carbures

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 6

Conclusion

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

性一交一乱一乱一区二区| 白色紧身裤无码系列在线| 久久婷婷综合五月一区二区| 爱爰哦好粗好猛操b视频| 男人天堂av在线免费看| 日韩精品无码一区二区三区不卡| 骚逼少妇被巨根爆插| 99精品欧美一区二区三区喷胶| 日韩av一区二区三区激情在线| 日韩中文字幕一区二区高清| 中文字幕无码区一区二区| 国产一级第一级毛片| 欧美亚洲综合久久夜夜嗨| 久久精品小视频/| 男人插女人视频软件| 欧美一区二区三区刘玥| 人人超级碰青青精品| 女人操女人大逼大片| 夜夜38亚洲综合网| 亚洲综合青青草原在线| 三级成人国产高清视频| 男的日女生批网页| 精品国产自在久国产应用| 亚洲 欧美 日韩 主播| 日韩欧美人妻综合| 束缚久久久久久免费高潮| 9亚洲导航深夜福利亚洲| 欧美尤物操逼毛茸茸真爽| 很黄很爽的免费视频大全| 亚洲乱码专区一区二区三区四区| 护士毛片在线看中文字幕| aaa啊啊啊黄片| 欧美 日韩 亚洲 熟女| 亚洲欧美国产原创一区二区三区| 嗯嗯嗯啊啊啊好湿好痒好多水视频| 操世界最美丽的逼片| 黄色片视频1024| 国产剧情使劲操我逼| 黄色软件大屌怒戳粉嫩小穴| 日韩午夜经典福利| 黄色日女人逼视频|