{"id":21250,"date":"2022-07-23T16:07:37","date_gmt":"2022-07-23T08:07:37","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21250"},"modified":"2022-07-27T11:24:16","modified_gmt":"2022-07-27T03:24:16","slug":"august-wohlers-experiment-statics-showing-you-how-the-4-elements-impact-on-fatigue-crack","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/es\/august-wohlers-experiment-statics-showing-you-how-the-4-elements-impact-on-fatigue-crack\/","title":{"rendered":"Experimento est\u00e1tico de August W\u00f6hler que muestra c\u00f3mo los 4 elementos impactan en la fisuraci\u00f3n por fatiga"},"content":{"rendered":"
Fatigue cracks are generally the result of periodic plastic deformation in local areas. Fatigue is defined as “failure under repeated load or other types of load conditions, and this load level is not sufficient to cause failure when applied only once.” This plastic deformation occurs not because of the theoretical stress on the ideal component, but because the component surface can not be actually detected.<\/a><\/a><\/a><\/a><\/a><\/a><\/p> August W\u00f6hler es el pionero de la investigaci\u00f3n de la fatiga y propone un m\u00e9todo emp\u00edrico. Entre 1852 y 1870, W\u00f6hler estudi\u00f3 el deterioro progresivo de los ejes ferroviarios. \u00c9l construy\u00f3 el banco de pruebas que se muestra en la Figura 1. Este banco de pruebas permite girar y doblar dos ejes de ferrocarril al mismo tiempo. W\u00f6hler traz\u00f3 la relaci\u00f3n entre la tensi\u00f3n nominal y el n\u00famero de ciclos que conducen a la falla, lo que m\u00e1s tarde se conoce como diagrama SN. Cada curva sigue llam\u00e1ndose l\u00ednea de w \u00f6 hler. El m\u00e9todo Sn sigue siendo el m\u00e9todo m\u00e1s utilizado en la actualidad. Un ejemplo t\u00edpico de esta curva se muestra en la Figura 1.<\/p> <\/a><\/p> <\/a><\/p> Several effects can be observed through the w \u00f6 hler line. First, we note that the SN curve below the transition point (about 1000 cycles) is invalid because the nominal stress here is elastoplastic. We will show later that fatigue is caused by the release of plastic shear strain energy. Therefore, there is no linear relationship between stress and strain before fracture, and it cannot be used. Between the transition point and the fatigue limit (about 107 cycles), the Sn based analysis is valid. Above the fatigue limit, the slope of the curve decreases sharply, so this region is often referred to as the “infinite life” region. But this is not the case. For example, aluminum alloy will not have infinite life, and even steel will not have infinite life under variable amplitude load.<\/a><\/p> Con la aparici\u00f3n de la tecnolog\u00eda de amplificaci\u00f3n moderna, las personas pueden estudiar las grietas por fatiga con m\u00e1s detalle. Ahora sabemos que la aparici\u00f3n y propagaci\u00f3n de grietas por fatiga se puede dividir en dos etapas. En la etapa inicial, la grieta se propaga en un \u00e1ngulo de unos 45 grados con respecto a la carga aplicada (a lo largo de la l\u00ednea de esfuerzo cortante m\u00e1ximo). Despu\u00e9s de cruzar dos o tres l\u00edmites de grano, su direcci\u00f3n cambia y se extiende a lo largo de la direcci\u00f3n de unos 90 grados con respecto a la carga aplicada. Estas dos etapas se denominan grieta de etapa I y grieta de etapa II, como se muestra en la Figura 2.<\/a><\/a><\/a><\/a><\/p> If we observe a stage I crack at high magnification, we can see that the alternating stress will lead to the formation of a continuous slip band along the maximum shear plane. These slip bands slide back and forth, much like a deck of cards, resulting in uneven surfaces. The concave surface finally forms a “budding” crack, as shown in Figure 3. In phase I, the crack will expand in this mode until it meets the grain boundary and will stop temporarily. When enough energy is applied to the adjacent crystals, then the process will continue.<\/p> <\/a><\/p> <\/a><\/a><\/a><\/a><\/a><\/a><\/p> Despu\u00e9s de cruzar dos o tres l\u00edmites de grano, la direcci\u00f3n de propagaci\u00f3n de grietas ahora entra en el modo de fase II. En esta etapa, las propiedades f\u00edsicas de la propagaci\u00f3n de grietas han cambiado. La fisura en s\u00ed misma constituye un macroobst\u00e1culo para el flujo de tensiones, provocando una alta concentraci\u00f3n de tensiones pl\u00e1sticas en la punta de la fisura. Como se muestra en la Figura 4. Cabe se\u00f1alar que no todas las grietas de la etapa I se desarrollar\u00e1n a la etapa II.<\/a><\/p> In order to understand the propagation mechanism of stage II, we need to consider the situation of crack tip cross-section during the stress cycle. As shown in Figure 5. The fatigue cycle begins when the nominal stress is at point “a”. As the stress intensity increases and passes through point “B”, we notice that the crack tip opens, resulting in local plastic shear deformation, and the crack extends to point “C” in the original metal. When the tensile stress decreases through the “d” point, we observe that the crack tip closes, but the permanent plastic deformation leaves a unique serration, the so-called “cut line”. When the whole cycle ends at the “e” point, we observe that the crack has now increased the “Da” length and formed additional section lines. It is now understood that the range of crack growth is proportional to the range of applied elastic-plastic crack tip strain. A larger cycle range can form a larger Da.<\/a><\/p> <\/p> Se estudia y explica conceptualmente la influencia de los siguientes par\u00e1metros en la tasa de crecimiento de grietas por fatiga:<\/p> From the diagram, we can see that a certain “amount” of shear stress is released during the periodic change of the strength of the nominal stress. And the larger the range of stress changes, the greater the energy released. Through the SN curve shown in Figure 1, we can see that the fatigue life decreases exponentially with the increase of the stress cycle range.<\/a><\/p>Factores que afectan la tasa de crecimiento de grietas por fatiga<\/h2>
1Esfuerzo cortante<\/h3>