欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

En el proceso de mecanizado, la formación y evacuación de virutas son cruciales ya que garantizan la suave progresión del proceso de corte sin da?ar la máquina, las herramientas o la pieza de trabajo, garantizando al mismo tiempo la seguridad del operador. La formación de chips ha atraído más atención científica en el campo de la tecnología de mecanizado que cualquier otro tema, pero traducir estos hallazgos científicos en modelos prácticos y utilizables ha resultado un desafío. Aquí, exploramos la formación de virutas desde una perspectiva práctica.

What is the ideal chip?formation in machining process? 2

Figure 1: Simplified model of chip formation

During the machining process, the material removed undergoes plastic ?deformation and shearing within the shear plane and is expelled in long or short chip forms depending on the properties of the workpiece material. A significant amount of energy is consumed in the shear zone of the machining process. For machining incompressible materials, the deformation of material within the shear plane does not change its volume. Assuming deformation is simple shear and placing a stack of material layers parallel to the shear plane, chip formation can be viewed as a shearing process of these material layers.

Material Properties and Chip Formation

Numerous factors influence chip formation, particularly the properties of the workpiece material. Metal cutting processes involve plastic deformation of the workpiece material followed by shearing. Elastic and plastic material behaviors play a decisive role in this process. Different workpiece materials exhibit varying combinations of shear strength and ductility. Ductility of the workpiece material refers to the extent to which it can be deformed before fracturing (see Figure 2). The higher the ductility of the workpiece material, the longer the chips. As a rule of thumb, when the ductility of the material exceeds approximately 25%, chips range from long to very long.

What is the ideal chip?formation in machining process? 3

Figure 2: Influence of plastic and elastic properties of workpiece material on chip formation.

Some workpiece materials produce long chips; some produce long and ductile chips, while others produce short chips. This method is also used in the ISO system for classifying different types of workpiece materials. Since each ISO group (P, M, K, N, S, and H) produces predictable chips, the selection of tools and cutting conditions must match the material behavior. ISO Group P (steel) comprises materials with relatively high ductility and a tendency to form long chips. Proper precautions need to be taken to maintain the acceptable form and length of chips.

ISO Groups K (cast materials) and H (hardened steels) include materials with lower ductility that produce short chips. This simplifies chip control. ISO Groups M (stainless steel), S (super alloys), and N (non-ferrous materials) include materials with relatively low ductility but noticeably viscous. These materials form so-called “Built-up edge” chips.

What is the ideal chip?formation in machining process? 4

Figure 3: Classification of chip morphology and shapes.

Classification of Chip Morphology and Shapes

Chips can be classified from very long to very short, with ideal chips avoiding any extremes. Chips that are too short can make machining intermittent, leading to premature tool edge chipping and shortened tool life. From the perspective of tool life, longer chips are preferable. Long and smoothly shaped chips result in fewer micro-vibrations during the machining process, leading to better surface quality. However, from the perspective of the cutting process itself, long chips are not ideal. They can damage the machine, workpiece, and tools, creating unsafe conditions for operators. They can also pose ejection problems in chip conveyors, increasing production downtime.

chip formation
chip formation

Figure 4: Classification of chips, from long to short. From left to right: Ribbon, Tangled, Helical, Long Helical, Helix, Ideal Helix, Helical Pipe, Long comma, and Short comma chips.

Short chips eliminate ejection problems but indicate intermittent cutting, which may lead to shorter tool life (due to tool edge chipping) and micro-vibrations that degrade surface quality. Helical-shaped chips are neither too long nor too short, representing an ideal state, providing the best opportunity for optimal cutting operations.

Ideal chip formation, Short Helical type

What is the ideal chip?formation in machining process? 5

Low power requirement

Low stress on cutting edges

Low cutting force Easier to eject

 

Avoid very short chips

What is the ideal chip?formation in machining process? 6

High power requirement

High stress on cutting edges

May cause tool or workpiece deflection and vibration

 

Avoid long and ribbon-shaped chips

What is the ideal chip?formation in machining process? 7

Difficult to eject

Dangerous for operators

May re-cut and damage the workpiece or tool

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

国产大码丝袜老熟女av| 国产一国产一级毛片无码视频百度| 激情五月六月婷婷俺来也| 束缚久久久久久免费高潮| 春宵福利导航91| 男人草女人的骚逼逼| 大鸡巴插美女小逼逼| 3色w九九久久男人皇宫宕| 一级风流国产片a级| 久久综合娱乐中文网| 人妻少妇精品视频12p| 国产乱精品一区二区三区视频了| 少妇无码一区二区二三区| 视频一区二区三区日韩视频| 国产伦精品一区二区三区视频抖音| 精品无码国产一区二区三区A| 69国产精品久久久久久人| 手机成人三级a在线观看| 大屁股真人日逼视频| 美女张开腿让男人桶91| 男人草女人的视频免费看| 大几吧插进小穴视频| 交换夫妇4中文字幕| 日韩欧美视频在线观看不卡| 亚洲欧美一区二区三区孕妇| 欧美日韩一级视频| 96精品久久久久久蜜臀浪| 97人妻精品一区二区三区视频| 操烂嫩逼内射视频| 色网女人日本逼欧美| 色逼色逼色逼色逼色逼色| 彩虹网免费视频在线观看| 女人被大鸡吧操逼| 日韩激情视频在线看免费| 人妻在线系列一区二区三| 中日韩国内精品视频| 欧美黑屌操B内射冒白浆| 99热这里只有精品亚洲| 好爽又高潮了毛片在线看| 啊好爽好多水深插射视频| 久久免费国产视频|