欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Da Hartmetallventile h?ufig unter anspruchsvollen Bedingungen wie dem Pulvertransport ben?tigt werden, ist die Verschlei?festigkeit ein entscheidendes Element zur Leistungsbeurteilung von Ventilen.

What is Tungsten Carbide Demanded in Valves? 2

The wear forms on valves

Based on the conditions and mechanisms of friction, wear can take various forms, with common types including abrasive wear, adhesive wear, fatigue wear, corrosive wear, and erosive wear.

Common parameters used to characterize material wear performance include wear volume, wear rate, wear depth, wear resistance, and relative wear resistance. The fundamental requirement for abrasion resistance is that the surface of the object must have high hardness (surface hardness should exceed the hardness of the abrasive). Additionally, it should exhibit good oxidation resistance at the operating temperature. The most effective way to control or minimize wear is to enhance material hardness and wear resistance.

Sintered tungsten carbide has high strength, a smooth surface finish, and a lower coefficient of friction compared to steel when used in conjunction with other materials. This significantly reduces contact surface frictional forces, effectively lowering operating torque.

Material features of carbide

Whole sintered carbide?is produced by high-temperature heating of a mixture of tungsten and carbon. The hardness of most tungsten carbides is very high, with microhardness second only to diamond. It has a melting point of 2870°C and a boiling point of 6000°C, with a relative density of 15.63 (at 18°C). It is resistant to decomposition at high temperatures and exhibits excellent oxidation resistance.

Field investigations indicate that tungsten carbide demonstrates wear resistance in situations such as abrasive wear, erosive wear, and abrasion, which is about 100 times higher than that of tool steel, stainless steel, iron, and brass. It has 2-3 times the rigidity of steel and 4-6 times the rigidity of cast iron and brass, with impact resistance similar to that of quenched tool steel.

What is Tungsten Carbide Demanded in Valves? 3

The reason carbide is needed in valves

In conditions involving high temperature, high pressure, strong corrosion, and slurries or powders with solid particles such as in gasification and polycrystalline silicon, the sealing surfaces of conventional hard-sealed ball valves, V-port control valves, coal powder control valves, butterfly valves, and slide valves use carbides as the sealing materials for the valve disc and seat. However, due to the limitations of the sprayed tungsten carbide coating—thickness <2mm, hardness <60HRC, and coating adhesion to the substrate <1000psi—the spraying process is typically conducted under harsh conditions at temperatures as high as 10000°C. Valve lifespans are challenging to guarantee for 10,000 cycles, making it difficult to meet the long-term stable production requirements of systems handling coal chemical slurries and polycrystalline silicon powders.

On the other hand, the strength of sprayed tungsten carbide mainly relies on the base material, and when the coefficients of thermal expansion of the two materials are significantly different, the usage is limited by temperature and cannot exceed 450°C. The valve performance has seen significant improvements with the adoption of integral sintered carbides for the valve disc and seat in new types of hard-sealed ball valves (Figure 1), V-port control valves (Figure 2), coal powder control valves (Figure 3), butterfly valves (Figure 4), and slide valves, addressing these challenges.

What is Tungsten Carbide Demanded in Valves? 4

Fig1 Sealing ball valve

What is Tungsten Carbide Demanded in Valves? 5

Fig2 control valve

(1) High Hardness: With a hardness greater than 80HRC, it can withstand the high-speed scouring of multiphase particle media such as water-coal slurry, coal powder, and silicon powder.

(2) High-Temperature Resistance: Capable of prolonged operation at temperatures up to 750°C, it is not limited by temperature in terms of strength, adhesion, and thermal expansion. This completely meets the requirements of high-temperature conditions, such as those encountered in coal chemical processes.

(3) High Pressure Resistance: The transverse fracture strength of integral sintered tungsten carbide reaches 4000MPa, more than 10 times the strength of conventional steel. It can operate long-term under working pressures up to 25MPa.

(4) Corrosion Resistance: Integral sintered tungsten carbide exhibits stable chemical properties. It is insoluble in water, does not react with hydrochloric acid and sulfuric acid, and is not dissolved even in aqua regia. This corrosion resistance satisfies the special requirements of industries such as coal chemical processing.

Was wird in Ventilen für Wolframkarbid ben?tigt? 6

Fig3 Coal powder control valve

carbide valve

Fig4.?Butterfly valve

(5) Wear Resistance: The high hardness and stability of integral sintered tungsten carbide ensure excellent anti-wear properties for sealing components. This meets the special wear requirements of media such as coal powder and organosilicon (silicon powder particle hardness is 62HRC).

(6) Erosion Resistance: Conventional valves with sprayed tungsten carbide coatings on sealing surfaces often suffer severe erosion, exhibiting honeycomb patterns within a month under conditions of 250°C and losing functionality completely. In contrast, V-port control valves and coal powder control valves, which use integral sintered tungsten carbide as control components, have a lifespan of 12 months under 450°C (other conditions remaining the same). Disc valves and slide valves, subjected to more than 300,000 switching cycles, fully meet the long-term operational requirements of industries such as coal chemical processing for 8000 hours.

(7) High-Temperature Flexibility: Both the ball and seat are made of integral sintered carbides, with coefficients of thermal expansion ranging from 1/3 to 1/2 of conventional steel. This effectively prevents the common issue of valve sticking at high temperatures, ensuring excellent operational performance under high-temperature differential conditions.

(8) Low Friction: The use of sintered carbide?anti-wear pads not only extends the high-temperature lifespan of the pads but, due to their lower friction coefficient, typically only 1/3 to 1/2 of conventional paired materials. This significantly reduces frictional forces between components, lowering valve operating torque.

 

Fazit

Integral sintered carbide?possesses high strength, high hardness, a high melting point, stability, a low friction coefficient, wear resistance, erosion and cavitation resistance, and corrosion resistance. Manufacturing wear-resistant valve sealing components for demanding operating conditions has enhanced the applicability of valves, expanded their range of use, prolonged their operational lifespan, ensured various performance indicators, and met the development needs of the chemical industry.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

美性中文网中文字幕91| 综合伊人久久在一二三区| 爱爰哦好粗好猛操b视频| 国产精品三二一免费| 亚洲国产一区二区不卡在线资源| 使劲操大骚逼av| 那种视频在线观看你懂的| 国产精品三级一区二区| 色男人天堂亚洲男人天堂| 亚洲卡通动漫第127页| 天天舔操操操av| 久久精品小视频/| 日本成人精品一区二区三区| 挺进绝色邻居的紧窄小肉| 日本 视频 一区二区| 国产色哟哟精选在线播放| 免费看黑人操逼视频| 丁香社区五月在线视频久| 男人插女人视频软件| 美女日比视频播放| 精品麻豆国产免费一区二区三区| 东京热无码AV一区二区三区| 黄色视频力肏女人| av中文字幕一区二区精品久久| 内射后入在线观看一区| 束缚久久久久久免费高潮| 久久99热东京热亲亲热| 亚洲欧美国产原创一区二区三区| 鸡巴和逼中国美女| 亚洲 自拍 欧美 一区| 精品久久久久久不卡亚洲| 中文有码无码人妻在线看| 久久久五月性色视频| 中日韩VA无码中文字幕| 欧美高清在线观看一区二区三区| 精品久久久久久久人妻换| 久久综合日韩亚洲精品色| 在线视频观看一区| 男生用鸡巴操女生的视频| 91性潮久久久久久久久| 欧美一区二区三区四区五区精品|