欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Research status

For WC-Co Hartmetall, the rapidly advancing Powder Bed Fusion (PBF) additive manufacturing (AM) technology has shown unique advantages in producing complex structures of metal parts made of carbide. However, when manufacturing WC-Co carbide with high melting points and high content of hard phases, issues such as difficult-to-eliminate cracks, pores, abnormal grain growth, oxidation decarburization, and brittleness often arise, leading to poor mechanical properties of the produced carbide. In recent years, there have been many reports on the use of Green Additive Manufacturing-Debinding and Sintering (GAM-DS) technology to fabricate WC-Co carbide, which have shown significant advantages in addressing issues such as cracking, abnormal grain growth, oxidation decarburization, and brittleness in PBF carbide. However, the process of preparing green bodies is prone to defects such as pores, interlayer cracks, uneven carbon distribution, and weak local bonding, resulting in problems such as porosity, uneven sintering shrinkage, and uneven microstructure in the sintered bodies. Compared with powder metallurgy, the prepared carbide have relatively low relative densities, and there is a significant gap in mechanical properties.

Brief introduction of research results

Recently, the State Key Laboratory of Powder Metallurgy at Central South University has employed Material Extrusion Additive Manufacturing (MEX) – Debinding and Sintering (DS) technology to successfully produce high-strength and tough WC-9Co cemented carbide with no pores, no cracks, and uniform shrinkage in all directions. Its relative density is approximately 99.7%, and its Vickers hardness, transverse fracture strength, and fracture toughness reach 1525±3HV30, 3492±45MPa, and 20.4±0.5 MPa·m1/2 respectively. The comprehensive mechanical properties are comparable to those of high-performance WC-Co carbide prepared by powder metallurgy processes. The relevant work, titled “Material extrusion additive manufacturing of WC-9Co cemented carbide,” was published in the top international journal “Additive Manufacturing.”

 

research chart

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 2

FIG. 1 Microstructure of MEX WC-9Co cemented carbide green

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 3

FIG. 2 Schematic diagram of stack pore formation of cemented carbide printing green billet: a. MEX stack pore formation; b. Increasing the overlap rate of microfilaments is conducive to reducing the stack porosity of green billet;

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 4

FIG. 3 Microstructure of MEX-DSWC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 5

Figure 4 Micro-CT analysis results of internal defects in MEX-DS WC-9Co cemented carbide

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 6

Figure 5 Microstructure of WC-9Co cemented carbide: (a) MEX-DS; (b) Press forming – degreasing sintering

How to achieve a transverse fracture strength of 3492 MPa in high-strength and tough WC-Co carbide additive manufacturing? 7

Figure 6 MEX-DS WC-Co carbide Co pool and Co rich zone

WC-Co carbide

Figure 7 Transverse fracture strength and fracture toughness of WC-(8-12)Co cemented carbide prepared by different processes

 

Zusammenfassung

Conclusion of the Paper

(1) By calculating the plasticity index of the printed feedstock with a powder loading of 54 Vol.%, the mechanism of green body printing defects was analyzed, and the green body MEX parameters were optimized. Using optimized parameters such as a printing temperature of 150°C, filament overlap rate of 30%, and printing layer thickness of 0.1mm, defect-free green bodies of WC-9Co cemented carbide with a relative density of 98.5% were prepared.

(2) Both excessively high or low temperatures during the debinding process using n-heptane can lead to debinding cracks. Rapid solvent evaporation during the drying process of debound bodies can also result in microcracks. By employing a two-step solvent debinding process, namely, n-heptane debinding at 30°C for 12 hours followed by kerosene debinding at 30°C for 1 hour, the solvent evaporation rate was reduced, resulting in high-quality debound bodies with no noticeable debinding defects and uniform distribution of binder.

(3) Defects in MEX green bodies can lead to the formation of Co-rich regions or pools, abnormal WC grains, residual pores, etc., in WC-Co carbide. These defects can be improved or eliminated during the sintering process through liquid phase flow and rearrangement of WC particles. By optimizing the MEX green body printing and solvent debinding processes to eliminate printing and debinding defects, it is possible to eliminate defects such as sintering pores, cracks, Co pools, abnormal grain growth, etc., in WC-Co carbide, resulting in near-full-density WC-9Co carbide.

(4) By employing MEX green bodies, a two-step solvent debinding process, and a continuous thermal debinding-vacuum pressure sintering process, WC-9Co carbide with uniform microstructure, smaller grain size, and relatively uniform distribution were prepared. The Vickers hardness, transverse fracture strength, and fracture toughness were measured to be 1525±3HV30, 3492±45MPa, and 20.4±0.5MPa·m1/2, respectively. The comprehensive mechanical properties were superior to those reported by recent additive manufacturing technologies and comparable to those of WC-Co carbide prepared by traditional powder metallurgy processes.

Main Innovations of the paper of WC-Co carbide additive manufacturing

The use of WC-Co carbide MEX-DS technology to prepare near-full-density WC-9Co carbide, with a transverse fracture strength reaching 3492MPa and a fracture toughness exceeding 20MPa·m1/2, has significantly improved the transverse fracture strength of WC-Co carbide prepared by current AM methods (ranging from 1500-2000 MPa to 3000-4000MPa with HIP treatment) and increased fracture toughness to above 20MPa·m1/2. The comprehensive mechanical properties are significantly better than those reported by similar studies and comparable to similar products prepared by powder metallurgy. The research results are of great significance for addressing the challenging issues of porosity, cracks, and harmful phases encountered in current carbide additive manufacturing and for the development of carbide additive manufacturing technology.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

操老骚逼三级黄视频| 欧美日韩久久久一区二区三区| 三级无码日B视频| 免费国产香蕉视频在线观看| 久久久精品国产乱码内射| 欧美一区二区三区久久国产精品| 韩国无玛黄片毛片| 国产欧美一二区不卡视频| 人妻含泪让粗大挺进| 国产一国产一级毛片无码视频百度| 亚洲精品国产人久久| 性色av一区二区三区天美传媒四| 国产黄片在线免费看| 大鸡巴操逼视频免费| 爱男爽高潮鸡穴视频| 国产一国产一级毛片无码视频百度| 中文字幕乱码一区三区免费| 鸡巴插骚逼真舒服| 操逼动漫首页登录| 国产精品一区二区在线观看91| 男人把鸡巴插入女人| 热精品韩国毛久久久久久| 操的我的逼逼好爽好多水| 小美女淫荡的视频| 久久精品欧美精品免费观看| 爆乳1把你榨干在线观看| 日韩欧美一级特黄大片欧| 亚洲精品成人无码| 大鸡吧视频在线观看| 国产欧美一区二区精品久久久| 看一下日本人插逼逼洞视频| 97青青草免费在线观看| 国产精品视频一区二区三区八戒| 春宵福利导航91| 中国熟女色av夜夜嗨| 精品无码国产一区二区三区麻豆| 欧美一区二区三区刘玥| 男人操女人黄片黄色| 加勒比在线不卡一区二区观看| 中文字幕乱码人妻一区二区三区| 免费女人男人肏逼|