欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Carbide heat treatment is a critical process that plays a crucial role in enhancing the performance of hard alloys. By carefully designing and adjusting heat treatment parameters, the microstructure and mechanical properties of carbides can be controlled, enabling them to adapt to different working environments and application requirements.The use of?carbides in the mold industry is increasing day by day, so exploring and studying the heat treatment of carbides is of practical significance.

The Impact of Heat Treatment on the Strength of Carbides

Due to the different solubility of WC in Co at different temperatures, the possibility of achieving precipitation hardening of the binder phase through quenching at the solubilization temperature and subsequent aging is provided. Quenching can suppress the precipitation of WC and the isostructural transformation of Co (Co hexagonal close-packed, Co face-centered cubic). Literature reports indicate that the strength of an alloy with 40% cobalt can increase by about 10% after quenching, but the strength of an alloy with 10% cobalt decreases after quenching. Annealing can also cause a decrease in the strength of the alloy, as shown in Table 1 and Figure 1.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 2

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 3

The Impact of Heat Treatment on the Hardness of Carbides

During the aging process of WC-Co alloy, the precipitation of Co3WCX and the formation of a dense microstructure occur, resulting in an increase in the hardness of the alloy. However, when the subsequent transformation leads to the precipitation of Co3W, the hardness of the alloy decreases. Experimental data is illustrated in Figure 5 and Figure 6.

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 4

What is the Impact of Heat Treatment Processes on the Mechanical Properties of Carbide? 5

While the presence of Co3WCX after heat treatment slightly increases the hardness of the alloy, considering the extended heat treatment time and the decrease in flexural strength, it is believed that the precipitation of the Co3WCX phase for dispersion strengthening of the binder phase is not an effective method for developing new grades. Alternative approaches should be explored. Aging treatment involves maintaining the alloy at a specific temperature for a certain duration, allowing it to reach a thermodynamic equilibrium state. This can lead to the precipitation of phases that enhance hardness in the alloy, such as the Co3WCX phase. Aging treatment has a positive impact on improving the hardness and strength of carbides.

Applying different heat treatments for various grades

To enhance alloy performance, specific heat treatment processes tailored to different grades of Carbides are essential for achieving optimal properties. We have consolidated typical results of heat treatment for Carbides in Table 2 for your reference.

Typical results of heat treatment for Hartmetalls

Welchen Einfluss haben W?rmebehandlungsprozesse auf die mechanischen Eigenschaften von Hartmetall? 6

Fazit

Firstly, heat treatment has a significant impact on the crystal structure and grain size of carbides. By controlling the heating and cooling rates, the growth and arrangement of crystals can be adjusted, affecting the hardness and strength of alloy. For example, an appropriate quenching process can create a dense lattice structure, increasing the hardness of alloy.

Secondly, heat treatment also influences the wear resistance of alloy. By adjusting the elemental composition and distribution of phases in the alloy, the surface performance of hard alloys can be improved, making them more resistant to wear and corrosion. This is crucial for the performance of hard alloys in cutting, grinding, and other high-wear applications.

Additionally, heat treatment can also adjust the toughness and impact resistance of hard alloys. Through proper aging treatment, the binder phase in the alloy can be optimized, enhancing its bending and impact resistance. This is of great significance for the application of hard alloys in high-load and impact environments.

Overall, by precisely controlling the heat treatment process, comprehensive improvements in the performance of hard alloys can be achieved, making them better suited to the requirements of the industrial and manufacturing sectors.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

国产成人精品免费视频全| 农村胖肥胖女人操逼视频| 怎么样操女人的逼亚洲Av黄片段| 男人的天堂日本在线观看| 亚洲综合极品香蕉久久网| 90岁肥老奶奶毛毛外套| 亚洲AV无码一区二区三区系列| 免费看看小骚逼逼| 被春药女高潮抽搐喷水视频| 97人妻精品一区二区三区视频| 色一情一交一乱一区二区| 精品麻豆亚洲欧美| 综合欧美日韩一区二区三区| 久久久中文字幕在线视频| 大吊肏子宫在线观看| 亚洲美女后入在线播放| 日韩欧美一二三区| 大鸡吧插美女嫩逼| 偷窥国内肥臀老熟女视频| 黄色视频力肏女人| 色噜噜在线一区二区三区| 少妇无码一区二区二三区| 咪咪爱一级特黄大片| 黄色日女人逼视频| 2021国产精品自在自线| 少妇无码一区二区二三区| 欧美人人做人人爽人人喊| 视频在线观看一区@99| 国产精品亚洲1区2区| 精品无码国产一区二区三区麻豆| 国产成人亚洲欧美久久| 国产精品亚洲综合av| 国产精品熟女视频播放| 国产精品免费第一区二区| 插欧美美女逼逼逼逼| 极品 操 抽插视频| 97人妻精品一区二区三区视频| 农村胖肥胖女人操逼视频| 被医生添奶头和下面好爽| 三级片手机在线视频| 大鸡巴插美女小逼逼|