欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

As more and more metal parts manufacturers understand the advantages of powder metallurgy, they begin to look for new and improved methods to use this process. At the same time, they are familiar with and familiar with the current forging process.

But what if you can combine these two technologies to produce forged metal parts with better performance than traditional powder metal (PM)? This is actually possible. In fact, it has a name: powder metal forging.

Let’s understand the use of powder metallurgy forging and traditional powder metallurgy and traditional forging. As a reward, we will show a new alternative that is even more efficient than PM forging…

What Is Powder Metal Forging?

Powder metal forging is the combination of powder metallurgy and forging. Also known as powder forging, this metal forging uses powder materials because they have advantages in the following aspects:

1 forming capacity

2 reduce the number of process steps to produce final components with some potential unique advantages, such as fracture and cracking of connecting rod end cap

3 minimum waste

The rest is forged to produce high-strength parts that will be more durable than traditional powder metal components.

The process of forging powder metal begins when the raw powder is compacted and then sintered. After sintering, but when the part is still at high temperature (above 1800 ° f), the manipulator immediately grabs the part and transfers it to the forging die.

If real estate is related to “l(fā)ocation”, then the powder metal forging process is related to “density”. The purpose is to make PM parts as close to full density as possible. This will provide you with higher performance and higher mechanical properties. If operated properly, the porosity of parts can be eliminated by more than 99%.

?? ?? ?????? ????? ??????? ???????? ?? ???? ????? ???????? 2

Traditional powder metal forged parts VS sintering parts

Determining whether to use powder forging requires understanding which metals can be forged and which quality is most important for the project. Powder metallurgy can even produce complex parts at a higher productivity than forging.

Powder metal materials can be subject to conventional sintering treatment to improve tensile strength and bending fatigue strength. Due to the inherent net forming ability of powder metallurgy, forming is easier than stamping and processing.

Nevertheless, when strength is absolutely necessary and PM is not enough, metal forging process may be a better choice. Through powder forging, the shape complexity is good, but powder metallurgy is still much better.

However, there are still many examples of powder metallurgy forging and impressive results have been achieved. Take the connecting rod as an example. It has a unique shape. The pin end enters the interior of the piston, and the crank end is a large hole at the bottom, which is molded on the high shaft. With powder metallurgy forging, you can actually make these holes during the forging operation, thus reducing material waste and not requiring too much “flash” to fill the blockage or precision forging indentation.

You can use the traditional forging method to forge 1.2 pounds of raw materials, but with the powder metallurgy forging method, there may be only 1.02 pounds of low-cost iron copper carbon powder. This means reducing secondary processing – giving you a lead in the game.

?? ?? ?????? ????? ??????? ???????? ?? ???? ????? ???????? 3

It’s even better: ultra high temperature as an alternative to powder forging

Combining powder metallurgy with forging sounds like a win-win, right? This is absolutely true.. If your budget is not a problem.

In order to manufacture forged metal products, manufacturers need to:

1A compactor

2A specially designed sintering furnace

3A forging press

4 other equipment

Making all these machines work is very expensive, and the cost will fall directly on your lap.

Traditional powder metallurgy may not provide the level of performance you want, but traditional forging may be very expensive. So what can we do for people in between and on the edge?

Ultra high temperature sintering can improve the strength and other properties of powder metal parts, making you close to the position of powder metallurgy forging. We define ultra-high temperature sintering as heating iron powder at a temperature close to 2500 ° F.

This is a compromise that may actually give you more than the sum of the parts. Traditional powder metallurgy can provide 50-70% performance of powder metallurgy forging. Ultra high temperature sintering can provide 80-90% of powder metallurgy forging.

By using ultra-high temperature sintering, you can retain the more inherent dimensional accuracy provided by metal powder, but you can also provide mechanical properties close to the forging capacity of powder metallurgy.

One always popular side effect is that using a strict PM process may make material use more efficient. When forging connecting rods, the manufacturer must remove the resulting “flash”. Ultra high temperature sintering can produce a connecting rod to make your strength requirements without manual finishing, which will make it ready for field action.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

色婷婷国产精品视频一区二区保健| 色丁香之五月婷婷开心| 欧美日韩综合在线精品| 成人午夜视频在线播放| 久久午夜福利精品日韩| 国产日产欧美精品大秀| 少妇丰满a一区二区三区| 亚洲国产成人av毛片国产| 亚洲性日韩精品一区二区| 国产精品免费自拍视频| 亚洲成人免费天堂诱惑| 国产一区二区三区色噜噜| 午夜日韩在线观看视频| 大伊香蕉一区二区三区| 国产自拍欧美日韩在线观看| 欧美国产精品区一区二区三区| 欧美日韩一级黄片免费观看| 蜜桃av人妻精品一区二区三区| 成人免费观看视频免费| 少妇毛片一区二区三区| 免费在线观看欧美喷水黄片| 少妇人妻无一区二区三区| 国产亚洲二区精品美女久久| 国产色偷丝袜麻豆亚洲| 中文字幕日韩一区二区不卡| 亚洲天堂一区在线播放| 91免费精品国自产拍偷拍| 日韩成人高清免费在线| 国产欧美韩日一区二区三区| 九九九热视频最新在线| 欧美精品在线观看国产| 午夜传媒视频免费在线观看| 邻居人妻人公侵犯人妻视频| 国产精品久久女同磨豆腐| 日韩欧美中文字幕人妻| 五月婷婷六月丁香狠狠| 大香伊蕉欧美一区二区三区| 亚洲天堂久久精品成人| 日本视频在线观看不卡| 日韩中文无线码在线视频| 亚洲日本久久国产精品久久|